Skip to main content
Log in

Influence of Temperature on the Inverse Hall–Petch Effect in Nanocrystalline Materials: Phase Field Crystal Simulation

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The influence of temperature on the inverse Hall–Petch effect in nanocrystalline (NC) materials is investigated using phase field crystal simulation method. Simulated results indicate that the inverse Hall–Petch effect in NC materials becomes weakened at low temperature. The results also show that the change in microscopic deformation mechanism with temperature variation is the main reason for the weakening of the inverse Hall–Petch effect. At elevated temperature, grain rotation and grain boundary (GB) migration seriously reduce the yield stress so that the NC materials exhibit the inverse Hall–Petch effect. However, at low temperature, both grain rotation and GB migration occur with great difficulty, instead, the dislocations nucleated from the cusp of serrated GBs become active. The lack of grain rotation and GB migration during deformation is mainly responsible for the weakening of the inverse Hall–Petch effect. Furthermore, it is found that since small grain size is favorable for GB migration, the degree of weakening decreases with decreasing average grain size at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F.P. Yuan, Sci. China Phys. Mech. Astron. 55, 1657 (2012)

    Article  Google Scholar 

  2. M. Zuo, S. Tan, G.P. Li, Sci. China Phys. Mech. Astron. 55, 219 (2012)

    Article  Google Scholar 

  3. J. Zhang, W.X. Que, Y. Yuan, Sci. China Phys. Mech. Astron. 55, 1198 (2012)

    Article  Google Scholar 

  4. Y. Wei, C. Zhu, X. Wu, Sci. China Phys. Mech. Astron. 47, 86 (2004)

    Article  Google Scholar 

  5. R.W. Siegel, Mater. Sci. Forum 235–238, 851 (1997)

    Article  Google Scholar 

  6. P.G. Sanders, C.J. Youngdahl, J.R. Weertman, Mater. Sci. Eng. A 234, 77 (1997)

    Article  Google Scholar 

  7. C.C. Koch, T.R. Malow, Mater. Sci. Forum 312, 565 (1999)

    Article  Google Scholar 

  8. J. Schiøtz, K.W. Jacobsen, Science 301, 1357 (2003)

    Article  Google Scholar 

  9. K.R. Sriraman, S. Ganesh Sundara Raman, S.K. Seshadri, Mater. Sci. Eng. A 418, 303 (2006)

    Article  Google Scholar 

  10. T.G. Nieh, J.G. Wang, Intermetallics 13, 377 (2005)

    Article  Google Scholar 

  11. K.R. Elder, M. Katakowski, M. Haataja, Phys. Rev. Lett. 88, 245701 (2002)

    Article  Google Scholar 

  12. K.R. Elder, M. Grant, arXiv preprint cond-mat/0306681 (2003)

  13. A. Yamanaka, T. Takaki, Y. Tomita, Mater. Sci. Eng., A 491, 378 (2008)

    Article  Google Scholar 

  14. P. Stefanovic, M. Haataja, N. Provatas, Phys. Rev. E 80, 046107 (2009)

    Article  Google Scholar 

  15. T. Hirouchi, T. Takaki, Y. Tomita, Comput. Mater. Sci. 44, 1192 (2009)

    Article  Google Scholar 

  16. T. Shimokawa, A. Nakatani, H. Kitagawa, Phys. Rev. B 71, 224110 (2005)

    Article  Google Scholar 

  17. T. Hirouchi, T. Takaki, Y. Tomita, Int. J. Mechl. Sci. 52, 309 (2010)

    Article  Google Scholar 

  18. C.E. Carlton, P.J. Ferreira, Acta Mater. 55, 3749 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51174168 and 51274167) and Northwestern Polytechnical University Foundation for Fundamental Research (No. NPU-FFR-JC20120222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulong Zhao.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Chen, Z., Long, J. et al. Influence of Temperature on the Inverse Hall–Petch Effect in Nanocrystalline Materials: Phase Field Crystal Simulation. Acta Metall. Sin. (Engl. Lett.) 27, 81–86 (2014). https://doi.org/10.1007/s40195-014-0027-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-014-0027-5

Keywords

Navigation