Abstract
Copper nanowire (CuNW) has been considered as one of the most promising materials to replace ITO for transparent electrode (TE). However, the loose connections and oxidation problem limited its practical usage. Herein, we introduced a facile and simple electrodeposition method to solve these problems, which can effectively join the stacked NWs together and improve the oxidation resistance. After electrodeposition of Ag layer, the sheet resistance decreased to 13.8 Ohm/sq. at a transmittance of 90.5%. Thanks to the forming of firm joints, the relative resistance kept stable after 1000 times cyclic bending. Compared with pristine TE that the electrical conductivity increased 10 times under the atmosphere ambient, the electrical conductivity nearly unchanged after electrodepositing Ag layer under the same condition. The peaks of copper oxides are not observed in the XPS spectrum, proving the Ag layer prevents the contact between CuNWs and oxygen element. At last, a flexible and transparent heater was fabricated based on these advantages, which can produce uniform heating under a low input voltage.
This is a preview of subscription content, access via your institution.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.








References
- 1.
Lee J, Lee P, Lee H, Lee D, Lee SS, Ko SH (2012) Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 4(20):6408–6414. https://doi.org/10.1039/c2nr31254a
- 2.
Tian Y, Zhang H, Hang C, Wang S, Feng J, Ding S, Huang Y (2020) Recent advancesin metal nanowire-based transparent conductive films: fabrication and applications. Sci Found China 28(2). https://doi.org/10.16262/j.cnki.1005-0841.2020.02.003
- 3.
Ye S, Rathmell AR, Chen Z, Stewart IE, Wiley BJ (2014) Metal nanowire networks: the next generation of transparent conductors. Adv Mater 26(39):6670–6687. https://doi.org/10.1002/adma.201402710
- 4.
Lee J, Lee P, Lee HB, Hong S, Lee I, Yeo J, Lee SS, Kim T-S, Lee D, Ko SH (2013) Room-temperature Nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touch-panel application. Adv Funct Mater 23(34):4171–4176. https://doi.org/10.1002/adfm.201203802
- 5.
Huang Y, Liu Y, Youssef K, Tong K, Tian Y, Pei Q (2018) A solution processed flexible Nanocomposite substrate with efficient light extraction via periodic wrinkles for white organic light-emitting diodes. Adv Opt Mater 6(23). https://doi.org/10.1002/adom.201801015
- 6.
Lee H, Lee D, Ahn Y, Lee E-W, Park LS, Lee Y (2014) Highly efficient and low voltage silver nanowire-based OLEDs employing a n-type hole injection layer. Nanoscale 6(15):8565–8570. https://doi.org/10.1039/C4NR01768D
- 7.
Li W, Yarali E, Bakytbekov A, Anthopoulos TD, Shamim A (2020) Highly transparent and conductive electrodes enabled by scalable printing-and-sintering of silver nanowires. Nanotechnology 31(39):395201. https://doi.org/10.1088/1361-6528/ab9c53
- 8.
Wang S, Tian Y, Wang C, Hang C, Huang Y, Liao C (2019) Chemical and thermal robust tri-layer rGO/Ag NWs/GO composite film for wearable heaters. Compos Sci Technol 174:76–83. https://doi.org/10.1016/j.compscitech.2019.02.022
- 9.
Wu X, Zhou Z, Wang Y, Li J (2020) Syntheses of silver nanowires ink and printable flexible transparent conductive film: a review. Coatings 10(9). https://doi.org/10.3390/coatings10090865
- 10.
Byun E, Seo J, Kim D, Kim J (2018) Bifacial CdS/CdTe thin-film solar cells with copper nanowires as a transparent back contact. Opt Express 26(18):23594–23601. https://doi.org/10.1364/OE.26.023594
- 11.
Zhai H, Li Y, Chen L, Wang X, Shi L, Wang R, Sun J (2018) Semi-transparent polymer solar cells with all-copper nanowire electrodes. Nano Res 11(4):1956–1966. https://doi.org/10.1007/s12274-017-1812-z
- 12.
Du H, Pan Y, Zhang X, Cao F, Wan T, Du H, Joshi R, Chu D (2019) Silver nanowire/nickel hydroxide nanosheet composite for a transparent electrode and all-solid-state supercapacitor. Nanoscale Adv 1(1):140–146. https://doi.org/10.1039/C8NA00110C
- 13.
Lu Z, Yao C, Xie F, Si L, Jia F, Huang J, Wang Y, Ma Q (2020) Highly flexible and conductive sodium carboxymethyl cellulose/silver nanowires composite films. J Mater Sci Mater Electron 31(3):2353–2359. https://doi.org/10.1007/s10854-019-02768-x
- 14.
Xu X, Liu Z, He P, Yang J (2019) Screen printed silver nanowire and graphene oxide hybrid transparent electrodes for long-term electrocardiography monitoring. J Phys D Appl Phys 52(45):455401. https://doi.org/10.1088/1361-6463/ab3869
- 15.
Nguyen VH, Resende J, Papanastasiou DT, Fontanals N, Jiménez C, Muñoz-Rojas D, Bellet D (2019) Low-cost fabrication of flexible transparent electrodes based on Al doped ZnO and silver nanowire nanocomposites: impact of the network density. Nanoscale 11(25):12097–12107. https://doi.org/10.1039/C9NR02664A
- 16.
Hu L, Kim HS, Lee J-Y, Peumans P, Cui Y (2010) Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4(5):2955–2963. https://doi.org/10.1021/nn1005232
- 17.
Wu J, Agrawal M, Becerril HA, Bao Z, Liu Z, Chen Y, Peumans P (2010) Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4(1):43–48. https://doi.org/10.1021/nn900728d
- 18.
Hecht DS, Hu L, Irvin G (2011) Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater 23(13):1482–1513. https://doi.org/10.1002/adma.201003188
- 19.
Hecht DS, Heintz AM, Lee R, Hu L, Moore B, Cucksey C, Risser S (2011) High conductivity transparent carbon nanotube films deposited from superacid. Nanotechnology 22(7):075201. https://doi.org/10.1088/0957-4484/22/7/075201
- 20.
Beibei Z, Zakya HK, Filbert JB (2014) Transparent electrodes based on two-dimensional Ag nanogrids and double one-dimensional Ag nanogratings for organic photovoltaics. J Photonics Energy 5(1):1–13. https://doi.org/10.1117/1.JPE.5.057005
- 21.
Wang J, Fei F, Luo Q, Nie S, Wu N, Chen X, Su W, Li Y, Ma C-Q (2017) Modification of the highly conductive PEDOT:PSS layer for use in silver nanogrid electrodes for flexible inverted polymer solar cells. ACS Appl Mater Interfaces 9(8):7834–7842. https://doi.org/10.1021/acsami.6b16341
- 22.
Zhang H, Tian Y, Wang S, Huang Y, Wen J, Hang C, Zheng Z, Wang C (2020) Highly stable flexible transparent electrode via rapid electrodeposition coating of Ag-au alloy on copper nanowires for bifunctional electrochromic and supercapacitor device. Chem Eng J 399:125075. https://doi.org/10.1016/j.cej.2020.125075
- 23.
Yang Y, Chen S, Li W, Li P, Ma J, Li B, Zhao X, Ju Z, Chang H, Xiao L, Xu H, Liu Y (2020) Reduced graphene oxide gonformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding. ACS Nano 14(7):8754–8765. https://doi.org/10.1021/acsnano.0c03337
- 24.
Ding S, Tian Y, Jiu J, Suganuma K (2018) Highly conductive and transparent copper nanowire electrodes on surface coated flexible and heat-sensitive substrates. RSC Adv 8(4):2109–2115. https://doi.org/10.1039/C7RA12738C
- 25.
Duong T-H, Tran N-H, Kim H-C (2017) Low cost fabrication of flexible transparent electrodes using copper nanowires. Thin Solid Films 622:17–22. https://doi.org/10.1016/j.tsf.2016.12.015
- 26.
Zhang H, Wang S, Tian Y, Liu Y, Wen J, Huang Y, Hang C, Zheng Z, Wang C (2020) Electrodeposition fabrication of cu@Ni core shell nanowire network for highly stable transparent conductive films. Chem Eng J 390:124495. https://doi.org/10.1016/j.cej.2020.124495
- 27.
Tomotoshi D, Kawasaki H (2020) Surface and Interface designs in copper-based conductive inks for printed/flexible electronics. Nanomaterials 10(9). https://doi.org/10.3390/nano10091689
- 28.
Wang Y, Liu P, Wang H, Zeng B, Wang J, Chi F (2019) Flexible organic light-emitting devices with copper nanowire composite transparent conductive electrode. J Mater Sci 54(3):2343–2350. https://doi.org/10.1007/s10853-018-2986-9
- 29.
Wang R, Ruan H (2016) Synthesis of copper nanowires and its application to flexible transparent electrode. J Alloys Compd 656:936–943. https://doi.org/10.1016/j.jallcom.2015.09.279
- 30.
Mallikarjuna K, Hwang H-J, Chung W-H, Kim H-S (2016) Photonic welding of ultra-long copper nanowire network for flexible transparent electrodes using white flash light sintering. RSC Adv 6(6):4770–4779. https://doi.org/10.1039/C5RA25548A
- 31.
Wang J, Chen H, Zhao Y, Zhong Z, Tang Y, Liu G, Feng X, Xu F, Chen X, Cai D, Kang J (2020) Programmed ultrafast scan welding of cu nanowire networks with a pulsed ultraviolet laser beam for transparent conductive electrodes and flexible circuits. ACS Appl Mater Interfaces 12(31):35211–35221. https://doi.org/10.1021/acsami.0c07962
- 32.
Ding S, Jiu J, Tian Y, Sugahara T, Nagao S, Suganuma K (2015) Fast fabrication of copper nanowire transparent electrodes by a high intensity pulsed light sintering technique in air. Phys Chem Chem Phys 17(46):31110–31116. https://doi.org/10.1039/c5cp04582g
- 33.
Bobinger M, Mock J, La Torraca P, Becherer M, Lugli P, Larcher L (2017) Tailoring the aqueous synthesis and deposition of copper nanowires for transparent electrodes and heaters. Adv Mater Interfaces 4(20):1700568. https://doi.org/10.1002/admi.201700568
- 34.
Tokuno T, Nogi M, Karakawa M, Jiu J, Nge TT, Aso Y, Suganuma K (2011) Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res 4(12):1215–1222. https://doi.org/10.1007/s12274-011-0172-3
- 35.
Park JH, Jeong S, Lee EJ, Lee SS, Seok JY, Yang M, Choi Y, Kang B (2016) Transversally extended laser plasmonic welding for oxidation-free copper fabrication toward high-fidelity optoelectronics. Chem Mater 28(12):4151–4159. https://doi.org/10.1021/acs.chemmater.6b00013
- 36.
Ding S, Jiu J, Gao Y, Tian Y, Araki T, Sugahara T, Nagao S, Nogi M, Koga H, Suganuma K, Uchida H (2016) One-step fabrication of stretchable copper nanowire conductors by a fast photonic sintering technique and its application in wearable devices. ACS Appl Mater Interfaces 8(9):6190–6199. https://doi.org/10.1021/acsami.5b10802
- 37.
Peng P, Li L, He P, Zhu Y, Fu J, Huang Y, Guo W (2019) One-step selective laser patterning of copper/graphene flexible electrodes. Nanotechnology 30(18):185301. https://doi.org/10.1088/1361-6528/aafe4c
- 38.
Kholmanov IN, Domingues SH, Chou H, Wang X, Tan C, Kim J-Y, Li H, Piner R, Zarbin AJG, Ruoff RS (2013) Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes. ACS Nano 7(2):1811–1816. https://doi.org/10.1021/nn3060175
- 39.
Mayousse C, Celle C, Carella A, Simonato J-P (2014) Synthesis and purification of long copper nanowires. Application to high performance flexible transparent electrodes with and without PEDOT:PSS. Nano Res 7(3):315–324. https://doi.org/10.1007/s12274-013-0397-4
- 40.
Zhai H, Li Y, Chen L, Wang X, Shi L, Wang R, Sun J (2018) Copper nanowire-TiO2-polyacrylate composite electrodes with high conductivity and smoothness for flexible polymer solar cells. Nano Res 11(4):1895–1904. https://doi.org/10.1007/s12274-017-1807-9
- 41.
Zhang H, Wang S, Tian Y, Wen J, Hang C, Zheng Z, Huang Y, Ding S, Wang C (2020) High-efficiency extraction synthesis for high-purity copper nanowires and their applications in flexible transparent electrodes. Nano Mater Sci 2(2):164–171. https://doi.org/10.1016/j.nanoms.2019.09.007
Acknowledgments
The authors are grateful for financial supports from the NSAF (Grant No. U1730107) and China Postdoctoral Science Foundation (Grant No. 2019 M660073).
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
There are no conflicts of interest to declare.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Recommended for publication by Commission VII - Microjoining and Nanojoining
Rights and permissions
About this article
Cite this article
Zhang, H., Wang, S., Hang, C. et al. Joining of copper nanowires by electrodepositing silver layer for high-performance transparent electrode. Weld World (2021). https://doi.org/10.1007/s40194-021-01066-7
Received:
Accepted:
Published:
Keywords
- Copper nanowires
- Nano joining
- Electrodeposition
- Transparent electrode