A research on the fatigue strength of the single-lap joint joints bonded with nanoparticle-reinforced adhesive

Abstract

Nano-technological developments, which have made significant progress in recent years, have significant impact on the science of adhesives. Therefore, in our study, the static and fatigue strengths of single-lap joints (SLJs) incorporating nanoparticles were compared to those without nanoparticles. Steel plates were used in the adhesive joints. The results revealed that average damage load increased significantly in nanoparticle-reinforced adhesive joints. The highest damage load was obtained with 4 wt% nano-Al2O3 in epoxy adhesive. As the average damage load increased, the locus of damage changed from interfacial to the mixture of interfacial and cohesive. Also, fatigue strengths of the joints increased when the adhesive joint had nano-Al2O3 and nano-SiO2, and decreased when the adhesive joint had nano-TiO2.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Ünal E (2006) Simulation of fatigue of glass fibre composite materials in atmospheric environment and sea environment. Graduate Thesis, Ege University Institute of Science and Technology, İzmir

    Google Scholar 

  2. 2.

    Turan K, Pekbey Y (2015) Progressive failure analysis of reinforced-adhesively single-lap joint. J Adhes 91:962–977. https://doi.org/10.1080/00218464.2014.985379

    CAS  Article  Google Scholar 

  3. 3.

    Solmaz MY, Topkaya T (2013) Progressive failure analysis in adhesively, riveted, and hybrid bonded double-lap joints. J Adhes 89:822–836. https://doi.org/10.1080/00218464.2013.765800

    CAS  Article  Google Scholar 

  4. 4.

    Özer H, Öz Ö (2012) Three dimensional finite element analysis of bi-adhesively bonded double lap joint. Int J Adhes Adhes 37:50–55. https://doi.org/10.1515/jtam-2015-0019

    Article  Google Scholar 

  5. 5.

    Adin H, Turgut A (2012) Strength and failure analysis of inverse Z joints bonded with Vinylester Atlac 580 and Flexo Tix adhesives. J Mech Sci Technol 26:3453–3461. https://doi.org/10.1007/s12206-012-0873-x

    Article  Google Scholar 

  6. 6.

    Çalık A (2016) Effect of adherend shape on stress concentration reduction of adhesively bonded single lap joint. Eng Rev 36(1):29–34

    Google Scholar 

  7. 7.

    Li W, Blunt L, Stout KJ (1997) Analysis and design of adhesive-bonded tee joints. Int J Adhes Adhes 17:303–311. https://doi.org/10.1016/S0143-7496(97)00012-2

    Article  Google Scholar 

  8. 8.

    Domingues NRE, Campilho RDSG, Carbas RJC, da Silva LFM (2016) Experimental and numerical failure analysis of aluminium/composite single-L joints. Int J Adhes Adhes 64:86–96. https://doi.org/10.1016/j.ijadhadh.2015.10.011

    CAS  Article  Google Scholar 

  9. 9.

    Çalık A, Yıldırım S (2017) Effect of adherend recessing on bi-adhesively bonded single-lap joints with spew fillet. Sadhana 42:317–325. https://doi.org/10.1007/s12046-017-0603-2

    Article  Google Scholar 

  10. 10.

    Tosun E, Çalık A (2016) Failure load prediction of single lap adhesive joints using artificial neural networks. Alex Eng J 55:1341–1346. https://doi.org/10.1016/j.aej.2016.04.029

    Article  Google Scholar 

  11. 11.

    Thawre MM, Pandey KN, Dubey A, Verma KK, Peshwe DR, Paretkar RK (2015) Fatigue life of a carbon fibre composite T-joint under a standard fighter aircraft spectrum load sequence. Compos Struct 127:260–266. https://doi.org/10.1016/j.compstruct.2015.03.026

    Article  Google Scholar 

  12. 12.

    Çitil Ş, Ayaz Y, Temiz Ş (2017) Stress analysis of adhesively bonded double strap joints with or without intermediate part subjected to tensile loading. J Adhes 93(5):343–356. https://doi.org/10.1080/00218464.2015.1075885

    CAS  Article  Google Scholar 

  13. 13.

    Özel A, Yazıcı B, Akpınar S, Aydın MD, Temiz Ş (2014) A study on the strength of adhesively bonded joints with different adherends. Compos Part B 62:167–174. https://doi.org/10.1016/j.compositesb.2014.03.001

    CAS  Article  Google Scholar 

  14. 14.

    Çitil Ş (2017) Comparison of stepped, curved, and S-Type lap joints under tensile loading. In: da Silva Lucas FM (ed) Materials Design and Applications. Springer, Porto, pp 377–388

    Google Scholar 

  15. 15.

    Gültekin K, Akpınar S, Özel A (2014) The effect of the adherend width on the strength of adhesively bonded single-lap joint: experimental and numerical analysis. Compos Part B 60:736–745. https://doi.org/10.1016/j.compositesb.2014.01.022

    CAS  Article  Google Scholar 

  16. 16.

    Çitil Ş, Ayaz Y, Temiz Ş, Aydın MD (2017) Mechanical behaviour of adhesively repaired pipes subject to internal pressure. Int J Adhes Adhes 75:88–95. https://doi.org/10.1016/j.ijadhadh.2017.02.015

    CAS  Article  Google Scholar 

  17. 17.

    Çitil S, Temiz S, Altun H, Özel A (2011) Determination of mechanical properties of double strap adhesive joints with an embedded patch. J Adhes Sci Technol 25:2555–2567. https://doi.org/10.1163/016942411X580225

    CAS  Article  Google Scholar 

  18. 18.

    Fernando M, Harjoprayitno WW, Kinloch AJ (1996) A fracture mechanics study of the influence of moisture on the fatigue behaviour of adhesively bonded aluminium-alloy joints. Int J Adhes Adhes 16:113–119. https://doi.org/10.1016/0143-7496(96)89799-5

    CAS  Article  Google Scholar 

  19. 19.

    Ferreira JAM, Reis PN, Costa JDM, Richardson MOW (2002) Fatigue behaviour of composite adhesive lap joints. Compos Sci Technol 62:1373–1379. https://doi.org/10.1016/S0266-3538(02)00082-9

    CAS  Article  Google Scholar 

  20. 20.

    Dessureault M, Spelt JK (1997) Observations of fatigue crack initiation and propagation in an epoxy adhesive. Int J Adhes Adhes 17:183–195. https://doi.org/10.1016/S0143-7496(96)00044-9

    CAS  Article  Google Scholar 

  21. 21.

    Blanchard C, Chateauminois A, Vincent L (1996) A new testing methodology for the assessment of fatigue properties of structural adhesives. Int J Adhes Adhes 16:289–299. https://doi.org/10.1016/S0143-7496(96)00018-8

    CAS  Article  Google Scholar 

  22. 22.

    Abou-Hamda MM, Megahed MM, Hammouda MMI (1998) Fatigue crack growth in double cantilever beam specimen with an adhesive layer. Eng Fract Mech 60:605–614. https://doi.org/10.1016/S0013-7944(98)00018-6

    Article  Google Scholar 

  23. 23.

    De Goeij WC, Van Tooren MJL, Beukers A (1999) Composite adhesive joints under cyclic loading. Mater Des 20:213–221. https://doi.org/10.1016/S0261-3069(99)00032-1

    Article  Google Scholar 

  24. 24.

    A.D C, G R (1999) Assessing stress state and mean load effects on the fatigue response of adhesively bonded joints. Int J Adhes Adhes 19:19–27. https://doi.org/10.1016/S0143-7496(98)00049-9

    Article  Google Scholar 

  25. 25.

    Imanaka M, Nakayama H, Morikawa K, Nakamura M (1995) Evaluation of fatigue life of adhesively bonded CFRP pipe/steel rod joints. Compos Struct 31:235–241. https://doi.org/10.1016/0263-8223(95)00015-1

    Article  Google Scholar 

  26. 26.

    Knox EM, Cowling MJ, Hashim SA (2000) Fatigue performance of adhesively bonded connections in GRE pipes. Int J Fatigue 22:513–519. https://doi.org/10.1016/S0142-1123(00)00015-3

    CAS  Article  Google Scholar 

  27. 27.

    Fu M, Mallick PK (2001) Fatigue of hybrid (adhesive/bolted) joints in SRIM composites. Int J Adhes Adhes 21:145–159. https://doi.org/10.1016/S0143-7496(00)00047-6

    CAS  Article  Google Scholar 

  28. 28.

    Quaresimin M, Ricotta M (2006) Fatigue behaviour and damage evolution of single lap bonded joints in composite material. Compos Sci Technol 66:176–187. https://doi.org/10.1016/j.compscitech.2005.04.026

    CAS  Article  Google Scholar 

  29. 29.

    Jen YM, Ko CW (2010) Evaluation of fatigue life of adhesively bonded aluminium single-lap joints using interfacial parameters. Int J Fatigue 32:330–340. https://doi.org/10.1016/j.ijfatigue.2009.07.001

    CAS  Article  Google Scholar 

  30. 30.

    Gültekin K, Akpınar S, Gürses A, Eroğlu Z, Özel A (2016) The effects of graphene nanostructure reinforcement on the adhesive method and the graphene reinforcement ratio on the failure load in adhesively bonded joints. Compos Part B 98:362–369. https://doi.org/10.1016/j.compositesb.2016.05.039

    CAS  Article  Google Scholar 

  31. 31.

    Akpınar IA, Gültekin K, Akpınar S, Akbulut H, Özel A (2017) Experimental analysis on the single-lap joints bonded by a nanocomposite adhesives which obtained by adding nanostructures. Compos Part B 110:420–428. https://doi.org/10.1016/j.compositesb.2016.11.046

    CAS  Article  Google Scholar 

  32. 32.

    Ekrem M, Avcı A (2018) Effects of polyvinyl alcohol nanofiber mats on the adhesion strength and fracture toughness of epoxy adhesive joints. Compos Part B 138:256–264. https://doi.org/10.1016/j.compositesb.2017.11.049

    CAS  Article  Google Scholar 

  33. 33.

    Meguid SA, Sun Y (2004) On the tensile and shear strength of nano-reinforced composite interfaces. Mater Des 25:289–296. https://doi.org/10.1016/j.matdes.2003.10.018

    CAS  Article  Google Scholar 

  34. 34.

    Zhai L, Ling G, Li J, Wang Y (2006) The effect of nanoparticles on the adhesion of epoxy adhesive. Mater Lett 60:3031–3033. https://doi.org/10.1016/j.matlet.2006.02.038

    CAS  Article  Google Scholar 

  35. 35.

    Zhai L, Ling G, Li J, Wang Y (2008) Effect of nano- Al2O3 on adhesion strength of epoxy adhesive and steel. Int J Adhes Adhes 28:23–28. https://doi.org/10.1016/j.ijadhadh.2007.03.005

    CAS  Article  Google Scholar 

  36. 36.

    Srivastava VK (2011) Effect of carbon nanotubes on the strength of adhesive lap joints of C/C and C/C–SiC ceramic fibre composites. Int J Adhes Adhes 31:486–489. https://doi.org/10.1016/j.ijadhadh.2011.03.006

    CAS  Article  Google Scholar 

  37. 37.

    Khashaba UA, Aljinaidi AA, Hamed MA (2015) Development of CFRE composite scarf adhesive joints with SiC and Al2O3 nanoparticle. Compos Struct 128:415–427. https://doi.org/10.1016/j.compstruct.2015.03.071

    Article  Google Scholar 

  38. 38.

    Saraç I, Adin H, Temiz Ş (2019) Investigation of the effect of use of nano-Al2O3, nano-TiO2 and nano-SiO2 powders on strength of single lap joints bonded with epoxy adhesive. Compos Part B 166:472–482. https://doi.org/10.1016/j.compositesb.2019.02.007

    CAS  Article  Google Scholar 

  39. 39.

    Kang MH, Choi JH, Kweon JH (2014) Fatigue life evaluation and crack detection of the adhesive joint with carbon nanotubes. Compos Struct 108:417–422. https://doi.org/10.1016/j.compstruct.2013.09.046

    Article  Google Scholar 

Download references

Funding

We are grateful to Batman University Scientific Research Projects (BAP) Coordination for providing financial support for the realization of our work (Project number: BTÜBAP-2016-PhD-2).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hamit Adin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission XIII - Fatigue of Welded Components and Structures

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saraç, İ., Adin, H. & Temiz, Ş. A research on the fatigue strength of the single-lap joint joints bonded with nanoparticle-reinforced adhesive. Weld World (2021). https://doi.org/10.1007/s40194-020-01063-2

Download citation

Keywords

  • Adhesive joints
  • Single-lap joints
  • Nanoparticles
  • Fatigue