Skip to main content

Advertisement

Log in

Development and construction of AISI H11/ZrO2 joints for injection molding tools

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

Increasing demands in industrial applications and simultaneous efforts to provide long-lasting and cost-efficient tools in the injection molding industry lead to the use of metal–ceramic joints with the aim to combine the specific properties of both materials. Due to its high CTE, zirconium oxide (ZrO2) is used for the ceramic part and is joined with the tool steel AISI H11 (1.2343). In this work, suitable joining techniques with a low heat input and therefore a low thermal load are applied and characterized for the production of metal–ceramic composites. The selection of joining techniques is based on the boundary conditions during the injection molding process, in which the composites have to resist the temperature, pressure, as well as shear and tensile loads. Therefore, besides brazing, other joining processes such as gluing, screwing, shrinking, and clamping were analyzed as possible low temperature joining techniques for ceramic-metal-compounds. The best results for the tensile strengths with 90 MPa were achieved by a brazing process, carried out in vacuum with approximately 10−5 mbar, at a temperature of 920 °C for 5 min, using the commercially available brazing filler alloy CB4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Fernie, J. A.; Drew, R. A. L.; Knowles, K. M.: “Joining of engineering ceramics”. Int Mater Rev 54 (2009), Nr. 5, p. 283–331

  2. Schwartz M (1990) Ceramic joining, 1st edn. ASM International, Materials Park, Ohio

    Google Scholar 

  3. Nicklas, D.; El Gammal, A.: 2009“Anwendungsbeispiele im Maschinen- und Anlagenbau”. In: Kollenberg, W. (Hrsg.): Technische Keramik: Grundlagen - Werkstoffe - Verfahrenstechnik. 2. Auflage. Vulkan-Verlag, Essen, . – ISBN 978–3–8027–2927–7, Kapitel 5.2, p. 588–605

  4. Nicholas MG (1990) Joining of ceramics. Chapman and Hall, London

    Google Scholar 

  5. Tietz HD (1994) Technische Keramik – Aufbau, Eigenschaften, Herstellung, Bearbeitung, Prüfung. VDI Verlag, Düsseldorf

    Google Scholar 

  6. Boretius M, Lugscheider E, Tillmann W (1995) Fügen von Hochleistungskeramik. Verfahren–Auslegung–Prüfung–Anwendung. VDI-Verlag, Düsseldorf

    Google Scholar 

  7. Kollenberg W (2009) Technische Keramik: Grundlagen - Werkstoffe - Verfahrenstechnik. 2. Auflage. Vulkan-Verlag, Essen

    Google Scholar 

  8. Salmang H, Scholze H (2007) Keramik. Springer Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  9. Verband der Keramischen Industrie (2003) Technische Keramik. Fahner Verlag, Lauf

    Google Scholar 

  10. Lugscheider E, Krappitz H, Boretius M (1987) Fügen von Hochleistungskeramik untereinander und mit Metall. Technische Mitteilungen 80:231–237

    CAS  Google Scholar 

  11. Haberling, E.; Ernst, C.:1999 “Einfluss der Stahlbegleitelemente Phosphor, Aluminium und Bor auf das Eigenschaftsprofil des Warmarbeitsstahls X38CrMoV5-1 (1.2343)”. Amt für amtliche Veröffentlichungen der Europäischen Gemeinschaften, Luxemburg

  12. Werkzeug Stahl Center: Werkstoffdatenblatt 1.2343 - X38CrMoV5-1 (2017). URL: http://www.wst-center.de , date of download: 27.1.2017

  13. Uddeholms AB: Uddeholm Vidar Superior (1.2343) 2013. URL: http://www.uddeholm.com , date of download 2.2.2017

  14. Ciftcioglu, C.:2008 “Untersuchung zur Verbundfestigkeit von Zirkonium-oxid mit verschiedenen Kompositklebern – eine In-Vitro-Studie-”, Dissertation, Universität Bonn

  15. Liu GW, Li W, Qiao GJ, Wang HJ, Yang JF, Lu TJ (2009) Microstructures and interfacial behavior of zirconia/stainless steel joint prepared by pressureless active brazing. J Alloys Compd 470:163–167

    Article  CAS  Google Scholar 

  16. Hanson WB, Ironside KI, Fernie JA (2000) Active metal brazing of zirconia. Acta Mater 48:4673–4676

    Article  CAS  Google Scholar 

  17. Hao H, Wang Y, Jin Z, Wang X (1995) Joining of zirconia ceramic to stainless steel and to itself using Ag57Cu38Ti5 filler metal. J Am Ceram Soc 78:2157–2160

    Article  CAS  Google Scholar 

  18. Umicore Technical Materials: BrazeTec CB4 (2017). URL: www. umicore.com, date of download: 05.02.2017

  19. Xu R, Indacochea JE (1994) Reaction layer characterization of the braze joint of silicon nitride to stainless steel. J Mater Eng Perform 3:596–605

    Article  CAS  Google Scholar 

  20. Yano T, Suematsu H, Iseki T (1988) High-resolution electron micros-copy of a SiC/SiC joint brazed by a Ag-Cu-Ti alloy. J Mater Sci 23:3362–3366

    Article  CAS  Google Scholar 

  21. Boadi JK, Yano T, Iseki T (1987) Brazing of pressureless-sintered SiC using Ag-Cu-Ti alloy. J Mater Sci 22:2431–2434

    Article  CAS  Google Scholar 

Download references

Funding

The project 16KN045825 “Entwicklung von hybriden Werkzeugeinsätzen mit Kombinationswerkstoffen aus Keramik” is funded by the VDI/VDE-Innovation + Technik GmbH within the framework of the program to promote the ZIM by the German Federal Ministry for Economic Affairs and Energy. The authors are thankful for this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Anar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission XVII - Brazing, Soldering and Diffusion Bonding

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tillmann, W., Anar, N.B., Manka, M. et al. Development and construction of AISI H11/ZrO2 joints for injection molding tools. Weld World 63, 1861–1871 (2019). https://doi.org/10.1007/s40194-019-00800-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-019-00800-6

Keywords

Navigation