5-HTTLPR polymorphism and impulsivity under punishment: a gene × culture interaction

Abstract

A previous Japanese study has shown that the short (s) allele of the serotonin-transporter-linked polymorphic region (5-HTTLPR), implicated in higher sensitivity to aversive stimuli, may promote motor inhibitory control in conditions where impulsivity is punished. The present study conducted in Australia replicates this Japanese study to examine if culture modulates the observed gene–behaviour link. Japan has a tight culture, where norm adherence and low impulsivity are emphasised. In contrast, Australia is a loose culture, where deviation from norms is tolerated to a greater extent. We therefore expected that the s-allele carriers’ strong motor inhibitory control in aversive conditions might be weaker in Australia than in Japan. Ninety-eight second-generation Australians of East Asian heritage, including 53s/s-allele carriers, 32s/l-allele carriers and 11l/l-allele carriers, participated in the reward/punishment-go/nogo task. As expected, s/s carriers in Australia, compared with their peers in Japan, showed higher impulsivity when inappropriate responding was punished (i.e. punishment-nogo conditions) but lower impulsivity when appropriate non-responding was rewarded (i.e. reward-nogo conditions). In contrast, the behaviours of the Australian s/l-allele carriers were similar to those of their Japanese counterparts. The results suggest that the larger context of culture that provides behavioural norms should be considered when examining gene × environment interaction.

This is a preview of subscription content, access via your institution.

Fig. 1

Notes

  1. 1.

    One l/l-allele carrier was omitted from Nomura et al. (2015) study.

  2. 2.

    Hypothesis 1 was also tested by comparing the l-allele carrier group (11l/l-allele carriers and 32s/l-allele carriers) with the s/s-allele carrier group, in a 2 (genotype) × 2 (go) × 2 (nogo) mixed-design ANCOVA, with age and gender as covariates. The ANCOVA results showed a significant genotype × nogo interaction effect, F1,92 = 4.97, p = 0.028, ηp2 = 0.05. No other effect was significant. The pattern of interaction suggested that CER was higher in the l-allele group (M = 27.69, SE = 1.95, CI [23.82, 31.56]) than in the s/s-allele group (M = 24.13, SE = 1.75, CI [20.65, 27.6]) in the punishment-nogo conditions; however, the result of the simple test was non-significant, p = 0.18. Further, CER in the l-allele group was significantly higher in the punishment-nogo conditions than in the reward-nogo conditions, Mdif = 3.96, p < 0.001, whereas CER in the s/s-allele group did not differ between the two conditions, Mdif = 0.80, p = 0.40. As such, the result was inconsistent with Hypothesis 1 and highly similar to the result of the analysis without l/l-allele participants.

  3. 3.

    We also compared the s/s-allele group’s CER between the two studies in each of the four experimental conditions. It was significantly higher in the present study in the RP condition (Mdif = 9.5, t85 = 3.29, p = 0.001) and marginally in the PP conditions (Mdif = 4.9, t85 = 1.68, p = 0.10). It was significantly lower in the present study in both the RR (Mdif = − 6.3, t85 = − 2.22, p = 0.03) and PR conditions (Mdif = − 9.0, t85 = − 3.06, p = 0.003). The results are consistent with the hypotheses.

  4. 4.

    We also compared the s/l-allele group’s CER between the studies in each of the four experimental conditions. The two groups’ means were similar except they were marginal in the RR condition: for RP (Mdif = 3.4, t56 = 0.94, p = 0.35), PP (Mdif = − 1.6, t56 = − 0.42, p = 0.68), RR (Mdif = − 7.8, t56 = − 1.84, p = 0.06), and PR (Mdif = − 3.7, t56 = − 0.95, p = 0.34). The results were consistent with Hypothesis 4.

  5. 5.

    When the CER means were compared between the l-allele carrier group (11l/l-allele carriers and 32s/l-allele carriers) in the present study and s/l participants (n = 26) in Nomura et al.’s (2015) study, the differences were again non-significant for RP (Mdif = 5.37, t67 = 1.53, p = 0.14), PP (Mdif =  − 1.21, t67 =  − 0.34, p = 0.74), RR (Mdif =  − 6.28, t67 =  − 1.52, p = 0.11) and PR (Mdif =  − 3.48, t67 =  − 0.96, p = 0.34). Thus, the CER means were similar between the two studies regardless of whether the l/l-allele carriers were included or not in the analyses.

  6. 6.

    The mean OERs in the punishment-nogo conditions were 28.26 in Nomura et al.’s (2015) study and 22.09 in the present study, which significantly differed, t143 = 4.01, p < 0.001, whereas the mean OERs in the reward-nogo conditions were similar in the two studies (21.63 and 20.19, t143 < 1). This result relates to the fact that OERs were higher in the punishment-nogo than in the reward-nogo conditions in Nomura et al.’s (2015) study. Because omission errors suggest inattention, the participants in our study might have engaged in the task more consistently than those in the previous study.

References

  1. Aron, E. N., & Aron, A. (1997). Sensory-processing sensitivity and its relation to introversion and motionality. Journal of Personality and Social Psychology, 73(2), 345–368.

    Article  Google Scholar 

  2. Belsky, J., Bakermans-Kranenburg, M. J., & van Ijzendoorn, M. H. (2007). For better and for worse: Differential susceptibility to environmental influences. Current Direction in Psychological Sciences, 16, 300–304.

    Article  Google Scholar 

  3. Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135(6), 885–908.

    Article  Google Scholar 

  4. Bleys, D., Luyten, P., Soenens, B., & Claes, S. (2018). Gene-environment interactions between stress and 5-HTTLPR in depression: A meta-analytic update. Journal of Affective Disorders, 226, 339–345.

    Article  Google Scholar 

  5. Canli, T., & Lesch, K. P. (2007). Long story short: The serotonin transporter in emotion regulation and social cognition. Nature Neuroscience, 10(9), 1103–1109.

    Article  Google Scholar 

  6. Caspi, A., Hariri, A. R., Holmes, A., Uher, R., & Moffitt, T. (2010). Genetic sensitivity to the environment: The case of the serotonin transporter gene and its implications for studying complex diseases and traits. American Journal of Psychiatry, 167, 509–527.

    Article  Google Scholar 

  7. Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301(5631), 386–389. https://doi.org/10.1126/science.1083968.

    Article  PubMed  Google Scholar 

  8. Clark, L., Roiser, J. P., Cools, R., Rubinsztein, D. C., Sahakian, B. J., & Robbins, T. W. (2005). Stop signal response inhibition is not modulated by tryptophan depletion or the serotonin transporter polymorphism in healthy volunteers: Implications for the 5-HT theory of impulsivity. Psychopharmacology (Berl), 182(4), 570–578. https://doi.org/10.1007/s00213-005-0104-6.

    Article  Google Scholar 

  9. Congdon, E., & Canli, T. (2008). A neurogenetic approach to impulsivity. Journal of Personality, 76(6), 1447–1484. https://doi.org/10.1111/j.1467-6494.2008.00528.×.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Crockett, M. J., Clark, L., Tabibnia, G., Lieberman, M. D., & Robbins, T. W. (2008). Serotonin modulates behavioral reactions to unfairness. Science, 320(5884), 1739–1739. https://doi.org/10.1126/science.1155577.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Deakin, J. W., & Graeff, F. G. (1991). 5-HT and mechanisms of defence. Journal of Psychopharmacology, 5(4), 305–315. https://doi.org/10.1177/026988119100500414.

    Article  PubMed  Google Scholar 

  12. Dick, D. M., Agrawal, A., Keller, M. C., Adkins, A., Aliev, F., Monroe, S., Hewitt, J. K., Kendler, K. S., & Sher, K. J. (2015). Candidate gene–environment interaction research. Perspectives on Psychological Science, 10(1), 37–59. https://doi.org/10.1177/1745691614556682.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Duncan, L. E., & Keller, M. C. (2011). A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. American Journal of Psychiatry, 168(10), 1041–1049.

    Article  Google Scholar 

  14. Ellis, B. J., & Boyce, W. T. (2008). Biological sensitivity to context. Current Directions in Psychological Science, 17(3), 183–187. https://doi.org/10.1111/j.1467-8721.2008.00571.x.

    Article  Google Scholar 

  15. Fallgatter, A. J., Jatzke, S., Bartsch, A. J., Hamelbeck, B., & Lesch, K. P. (1999). Serotonin transporter promoter polymorphism influences topography of inhibitory motor control. International Journal of Neuropsychopharmacology, 2(2), 115–120. https://doi.org/10.1017/S1461145799001455.

    Article  Google Scholar 

  16. Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160.

    Article  Google Scholar 

  17. Gelfand, M. J., Raver, J. L., Nishii, L., Leslie, L. M., Lun, J., Lim, B. C., et al. (2011). Differences between tight and loose cultures: A 33-nation study. Science, 332(6033), 1100–1104. https://doi.org/10.1126/science.1197754.

    Article  PubMed  Google Scholar 

  18. Han, S., Northoff, G., Vogeley, K., Wexler, B. E., Kitayama, S., & Varnum, M. E. (2013). A cultural neuroscience approach to the biosocial nature of the human brain. Annual Review of Psychology, 64, 335–359. https://doi.org/10.1146/annurev-psych-071112-054629.

    Article  PubMed  Google Scholar 

  19. Harrison, A. A., Everitt, B. J., & Robbins, T. W. (1999). Central serotonin depletion impairs both the acquisition and performance of a symmetrically reinforced go/no-go conditional visual discrimination. Behavioural Brain Research, 100(1–2), 99–112. https://doi.org/10.1016/S0166-4328(98)00117-x.

    Article  PubMed  Google Scholar 

  20. Heils, A., Teufel, A., Petri, S., Stöber, G., Riederer, P., Bengel, D., & Lesch, K. P. (1996). Allelic variation of human serotonin transporter gene expression. Journal of Neurochemistry, 66(6), 2621–2624. https://doi.org/10.1046/j.1471-4159.1996.66062621.x.

    Article  PubMed  Google Scholar 

  21. Ishii, K., Kim, H. S., Sasaki, J. Y., Shinada, M., & Kusumi, I. (2014). Culture modulates sensitivity to the disappearance of facial expressions associated with serotonin transporter polymorphism (5-HTTLPR). Culture and Brain, 2(1), 72–88. https://doi.org/10.1007/s40167-014-0014-8.

    Article  Google Scholar 

  22. Jern, P., Verweij, K. J., Barlow, F. K., & Zietsch, B. P. (2017). Reported associations between receptor genes and human sociality are explained by methodological errors and do not replicate. Proceedings of the National Academy of Sciences, 114(44), E9185–E9186.

    Article  Google Scholar 

  23. Karg, K., Burmeister, M., Shedden, K., & Sen, S. (2011). The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: Evidence of genetic moderation. Archives of General Psychiatry, 68(5), 444–454. https://doi.org/10.1001/archgenpsychiatry.2010.189.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kim, H. S., Sherman, D. K., Mojaverian, T., Sasaki, J. Y., Park, J., Suh, E. M., & Taylor, S. E. (2011). Gene–culture interaction: Oxytocin receptor polymorphism (O × TR) and emotion regulation. Social Psychological and Personality Science, 2, 665–672.

    Article  Google Scholar 

  25. Kim, H. S., Sherman, D. K., Sasaki, J. Y., Xu, J., Chu, T. Q., Ryu, C., et al. (2010). Culture, distress, and oxytocin receptor polymorphism (OXTR) interact to influence emotional support seeking. Proceedings of the National Academy of Sciences USA, 107(36), 15717–15721.

    Article  Google Scholar 

  26. Kitayama, S., King, A., Yoon, C., Tompson, S., Huff, S., & Liberzon, I. (2014). The dopamine D4 receptor gene (DRD4) moderates cultural difference in independent versus interdependent social orientation. Psychological Science, 25, 1169–1177.

    Article  Google Scholar 

  27. Kitayama, S., & Uskul, A. K. (2011). Culture, mind, and the brain: Current evidence and future directions. Annual Review of Psychology, 62, 419–449. https://doi.org/10.1146/annurev-psych-120709-145357.

    Article  PubMed  Google Scholar 

  28. Lage, G. M., Malloy-Diniz, L. F., Matos, L. O., Bastos, M. A., Abrantes, S. S., & Corrêa, H. (2011). Impulsivity and the 5-HTTLPR polymorphism in a non-clinical sample. PLoS ONE, 6(2), e16927. https://doi.org/10.1371/journal.pone.0016927.

    Article  PubMed  PubMed Central  Google Scholar 

  29. LeMarquand, D. G., Benkelfat, C., Pihl, R. O., Palmour, R. M., & Young, S. N. (1999). Behavioral disinhibition induced by tryptophan depletion in nonalcoholic young men with multigenerational family histories of paternal alcoholism. American Journal of Psychiatry, 156(11), 1771–1779. https://doi.org/10.1176/ajp.156.11.1771.

    Article  Google Scholar 

  30. Ma, Y., Li, B., Wang, C., Shi, Z., Sun, Y., Sheng, F., et al. (2014). 5-HTTLPR polymorphism modulates neural mechanisms of negative self-reflection. Cerebral Cortex, 24(9), 2421–2429. https://doi.org/10.1093/cercor/bht099.

    Article  PubMed  Google Scholar 

  31. Masui, K., Kashino, M., & Nomura, M. (2009). Ventrolateral prefrontal cortex activity during reward punishment go/nogo task: A near-infrared spectroscopy study. Psychologia, 52, 137–146.

    Article  Google Scholar 

  32. Moffitt, T. E., Caspi, A., & Rutter, M. (2005). Strategy for investigating interactions between measured genes and measured environments. Archives of General Psychiatry, 62(5), 473–481. https://doi.org/10.1001/archpsyc.62.5.473

    Article  PubMed  Google Scholar 

  33. Mu, Y., Kitayama, S., Han, S., & Gelfand, M. J. (2015). How culture gets embrained: Cultural differences in event-related potentials of social norm violations. Proceedings of the National Academy of Sciences, 112(50), 15348–15353.

    Article  Google Scholar 

  34. Munafò, M. R., Freimer, N. B., Ng, W., Ophoff, R., Veijola, J., Miettunen, J., et al. (2009). 5-HTTLPR genotype and anxiety-related personality traits: A meta-analysis and new data. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 150(2), 271–281. https://doi.org/10.1002/ajmg.b.30808.

    Article  Google Scholar 

  35. Nomura, M., Kaneko, M., Okuma, Y., Nomura, J., Kusumi, I., Koyama, T., & Nomura, Y. (2015). Involvement of serotonin transporter gene polymorphism (5-HTT) in impulsive behavior in the Japanese population. PLoS ONE, 10(3), e0119743. https://doi.org/10.1371/journal.pone.0119743.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ouschan, L., Boldero, J. M., Kashima, Y., Wakimoto, R., & Kashima, E. S. (2007). Regulatory focus strategies scale: A measure of individual differences in the endorsement of regulatory strategies. Asian Journal of Social Psychology, 10(4), 243–257.

    Article  Google Scholar 

  37. Paaver, M., Nordquist, N., Parik, J., Harro, M., Oreland, L., & Harro, J. (2007). Platelet MAO activity and the 5-HTT gene promoter polymorphism are associated with impulsivity and cognitive style in visual information processing. Psychopharmacology (Berl), 194(4), 545–554. https://doi.org/10.1007/s00213-007-0867-z.

    Article  Google Scholar 

  38. Reynolds, B., Ortengren, A., Richards, J. B., & De Wit, H. (2006). Dimensions of impulsive behavior: Personality and behavioral measures. Personality and Individual Differences, 40(2), 305–315. https://doi.org/10.1016/j.paid.2005.03.024.

    Article  Google Scholar 

  39. Risch, N., Herrell, R., Lehner, T., Liang, K. Y., Eaves, L., Hoh, J., et al. (2009). Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: A meta-analysis. JAMA, 301(23), 2462–2471. https://doi.org/10.1001/jama.2009.878.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Robbins, T. W., & Crockett, M. J. (2010). Role of central serotonin in impulsivity and compulsivity: Comparative studies in experimental animals and humans. In C. P. Müller & B. L. Jacobs (Eds.), Handbook of behavioral neuroscience (Vol. 21, pp. 415–427). Elsevier. https://doi.org/10.1016/S1569-7339(10)70093-x.

  41. Rodrígues-Fornells, A., Lorenzo-Seva, U., & Andrés-Pueyo, A. (2002). Are high-impulsivity and high-risk-taking people more motor disinherited in the presence of incentive? Personality and Individual Differences, 32, 661–683.

    Article  Google Scholar 

  42. Rudert, S. C., Ruf, S., & Greifeneder, R. (2020). Whom to punish? How observers sanction norm-violating behavior in ostracism situations. European Journal of Social Psychology, 50(2), 376–391.

    Article  Google Scholar 

  43. Sakado, K., Sakado, M., Muratake, T., Mundt, C., & Someya, T. (2003). A psychometrically derived impulsive trait related to a polymorphism in the serotonin transporter gene-linked polymorphic region (5-HTTLPR) in a Japanese nonclinical population: Assessment by the Barratt Impulsivity Scale (BIS). American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 121(1), 71–75. https://doi.org/10.1002/ajmg.b.20063.

    Article  Google Scholar 

  44. Sasaki, J. Y., & Kim, H. S. (2017). Nature, nurture, and their interplay: A review of cultural neuroscience. Journal of Cross-Cultural Psychology, 48(1), 4–22.

    Article  Google Scholar 

  45. Soubrie, P. (1986). Reconciling the role of central serotonin neurons in human and animal behavior. Behavioral and Brain Sciences, 9(2), 319–335. https://doi.org/10.1017/S0140525x00022871.

    Article  Google Scholar 

  46. Stamkou, E., van Kleef, G. A., Homan, A. C., Gelfand, M. J., van de Vijver, F. J., van Egmond, M. C., et al. (2019). Cultural collectivism and tightness moderate responses to norm violators: Effects on power perception, moral emotions, and leader support. Personality and Social Psychology Bulletin, 45(6), 947–964. https://doi.org/10.1177/0146167218802832.

    Article  PubMed  Google Scholar 

  47. Tangney, J. P., Baumeister, R. F., & Boone, A. L. (2004). High self-control predicts good adjustment, less pathology, better grades, and interpersonal success. Journal of Personality, 72, 271–324.

    Article  Google Scholar 

  48. Van Ijzendoorn, M. H., Belsky, J., & Bakermans-Kranenburg, M. J. (2012). Serotonin transporter genotype 5-HTTLPR as a marker of differential susceptibility? A meta-analysis of child and adolescent gene-by-environment studies. Translational Psychiatry, 2, 1–6. https://doi.org/10.1038/tp.2012.73.

    Article  Google Scholar 

  49. Walderhaug, E., Magnusson, A., Neumeister, A., Lappalainen, J., Lunde, H., Refsum, H., & Landrø, N. I. (2007). Interactive effects of se × and 5-HTTLPR on mood and impulsivity during tryptophan depletion in healthy people. Biological Psychiatry, 62(6), 593–599. https://doi.org/10.1016/j.biopsych.2007.02.012.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by La Trobe University, with the Transforming Human Societies Research-Focused Area Research Grant to the first author.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Emiko S. Kashima.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest with regard to the authorship or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kashima, E.S., Guggolz, L., Bowden-Dodd, J. et al. 5-HTTLPR polymorphism and impulsivity under punishment: a gene × culture interaction. Cult. Brain (2021). https://doi.org/10.1007/s40167-020-00098-y

Download citation

Keywords

  • Impulsivity
  • Serotonin
  • 5-HTTLPR
  • Gene × culture interaction
  • Cultural tightness
  • Gene × environment interaction