Micro-fabrication of ceramics: Additive manufacturing and conventional technologies

Abstract

Ceramic materials are increasingly used in micro-electro-mechanical systems (MEMS) as they offer many advantages such as high-temperature resistance, high wear resistance, low density, and favourable mechanical and chemical properties at elevated temperature. However, with the emerging of additive manufacturing, the use of ceramics for functional and structural MEMS raises new opportunities and challenges. This paper provides an extensive review of the manufacturing processes used for ceramic-based MEMS, including additive and conventional manufacturing technologies. The review covers the micro-fabrication techniques of ceramics with the focus on their operating principles, main features, and processed materials. Challenges that need to be addressed in applying additive technologies in MEMS include ceramic printing on wafers, post-processing at the micro-level, resolution, and quality control. The paper also sheds light on the new possibilities of ceramic additive micro-fabrication and their potential applications, which indicates a promising future.

References

  1. [1]

    Essa K, Modica F, Imbaby M, et al. Manufacturing of metallic micro-components using hybrid soft lithography and micro-electrical discharge machining. Int J Adv Manuf Technol 2017, 91: 445–452.

    Article  Google Scholar 

  2. [2]

    Feynman RP. There's plenty of room at the bottom [data storage]. J Microelectromech Syst 1992, 1: 60–66.

    Article  Google Scholar 

  3. [3]

    Petersen KE. Silicon as a mechanical material. Proc IEEE 1982, 70: 420–457.

    CAS  Article  Google Scholar 

  4. [4]

    Howe RT. Surface micromachining for microsensors and microactuators. J Vac Sci Technol B 1988, 6: 1809.

    Article  Google Scholar 

  5. [5]

    Brandner JJ. Microfabrication in metals, ceramics and polymers. Russ J Gen Chem 2012, 82: 2025–2033.

    CAS  Article  Google Scholar 

  6. [6]

    Maboudian R. Surface processes in MEMS technology. Surf Sci Rep 1998, 30: 207–269.

    CAS  Article  Google Scholar 

  7. [7]

    Miki N. Techniques in the fabrication of high-speed micro-rotors for MEMS applications. In: MEMS/NEMS. Leondes CT, Ed. Boston: Springer, 2006: 335–352.

    Google Scholar 

  8. [8]

    Hassanin H, Jiang K. Functionally graded microceramic components. Microelectron Eng 2010, 87: 1610–1613.

    CAS  Article  Google Scholar 

  9. [9]

    Zhuiykov S. Development of ceramic electrochemical sensor based on Bi2Ru2O7+x-RuO2 sub-micron oxide sensing electrode for water quality monitoring. Ceram Int 2010, 36: 2407–2413.

    CAS  Article  Google Scholar 

  10. [10]

    Bauer W, Müller M, Knitter R, et al. Design and prototyping of a ceramic micro turbine: A case study. Microsyst Technol 2010, 16: 607–615.

    CAS  Article  Google Scholar 

  11. [11]

    Bae K, Jang DY, Jung HJ, et al. Micro ceramic fuel cells with multilayered yttrium-doped barium cerate and zirconate thin film electrolytes. J Power Sources 2014, 248: 1163–1169.

    CAS  Article  Google Scholar 

  12. [12]

    Zhao R, Shao G, Cao YJ, et al. Temperature sensor made of polymer-derived ceramics for high-temperature applications. Sensor Actuat A: Phys 2014, 219: 58–64.

    CAS  Article  Google Scholar 

  13. [13]

    Monri K, Maruo S. Three-dimensional ceramic molding based on microstereolithography for the production of piezoelectric energy harvesters. Sensor Actuat A: Phys 2013, 200: 31–36.

    CAS  Article  Google Scholar 

  14. [14]

    Bystrova S, Luttge R. Micromolding for ceramic microneedle arrays. Microelectron Eng 2011, 88: 1681–1684.

    CAS  Article  Google Scholar 

  15. [15]

    Piotter V, Beck MB, Ritzhaupt-Kleissl HJ, et al. Recent developments in micro ceramic injection molding. Int J Mater Res 2008, 99: 1157–1162.

    CAS  Article  Google Scholar 

  16. [16]

    Teterycz H, Kita J, Bauer R, et al. New design of an SnO2 gas sensor on low temperature cofiring ceramics. Sensor Actuat B: Chem 1998, 47: 100–103.

    CAS  Article  Google Scholar 

  17. [17]

    Hassanin H, Jiang K. Fabrication of Al2O3/SiC composite microcomponents using non-aqueous suspension. Adv Eng Mater 2009, 11: 101–105.

    CAS  Article  Google Scholar 

  18. [18]

    Liu J, Yang Y, Hassanin H, et al. Graphene-alumina nanocomposites with improved mechanical properties for biomedical applications. ACS Appl Mater Interfaces 2016, 8: 2607–2616.

    CAS  Article  Google Scholar 

  19. [19]

    Zhang KQ, Xie C, Wang G, et al. High solid loading, low viscosity photosensitive Al2O3 slurry for stereolithography based additive manufacturing. Ceram Int 2019, 45: 203–208.

    CAS  Article  Google Scholar 

  20. [20]

    Feng CW, Zhang KQ, He RJ, et al. Additive manufacturing of hydroxyapatite bioceramic scaffolds: Dispersion, digital light processing, sintering, mechanical properties, and biocompatibility. J Adv Ceram 2020, 9: 360–373.

    CAS  Article  Google Scholar 

  21. [21]

    Yang LL, Zeng XJ, Ditta A, et al. Preliminary 3D printing of large inclined-shaped alumina ceramic parts by direct ink writing. J Adv Ceram 2020, 9: 312–319.

    CAS  Article  Google Scholar 

  22. [22]

    Peng E, Zhang DW, Ding J. Ceramic robocasting: Recent achievements, potential, and future developments. Adv Mater 2018, 30: 1802404.

    Article  CAS  Google Scholar 

  23. [23]

    Kita J, Dziedzic A, Golonka LJ, et al. Properties of laser cut LTCC heaters. Microelectron Reliab 2000, 40: 1005–1010.

    Article  Google Scholar 

  24. [24]

    Rettig F, Moos R. Ceramic meso hot-plates for gas sensors. Sensor Actuat B: Chem 2004, 103: 91–97.

    CAS  Article  Google Scholar 

  25. [25]

    Iovdalskiy IMOVA, Bleivas IM, Ippolitov VM. Hybrid integrated circuit of gas sensor. 1996.

    Google Scholar 

  26. [26]

    Suresh A, Mayo MJ, Porter WD, et al. Crystallite and grain-size-dependent phase transformations in yttria-doped zirconia. J Am Ceram Soc 2003, 86: 360–362.

    CAS  Article  Google Scholar 

  27. [27]

    Saridag S, Tak O, Alniacik G. Basic properties and types of zirconia: An overview. World J Stomatol 2013, 2: 40–47.

    Article  Google Scholar 

  28. [28]

    Ghatee M, Shariat MH, Irvine JTS. Investigation of electrical and mechanical properties of 3YSZ/8YSZ composite electrolytes. Solid State Ionics 2009, 180: 57–62.

    CAS  Article  Google Scholar 

  29. [29]

    Butz, B. Yttria-doped zirconia as solid electrolyte for fuel-cell applications. Karlsruher Institut für Technologie, 2009.

    Google Scholar 

  30. [30]

    Drings H, Brossmann U, Schaefer HE. Preparation of crack-free nano-crystalline yttria-stabilized zirconia. Phys Stat Sol (RRL) 2007, 1: R7–R9.

    CAS  Article  Google Scholar 

  31. [31]

    Capdevila XG, Folch J, Calleja A, et al. High-density YSZ tapes fabricated via the multi-folding lamination process. Ceram Int 2009, 35: 1219–1226.

    CAS  Article  Google Scholar 

  32. [32]

    Jardiel T, Sotomayor ME, Levenfeld B, et al. Optimization of the processing of 8-YSZ powder by powder injection molding for SOFC electrolytes. Int J Appl Ceram Technol 2008, 5: 574–581.

    CAS  Article  Google Scholar 

  33. [33]

    Cheah KH, Khiew PS, Chin JK. Fabrication of a zirconia MEMS-based microthruster by gel casting on PDMS soft molds. J Micromech Microeng 2012, 22: 095013.

    Article  CAS  Google Scholar 

  34. [34]

    Jiang LD, Cheung R. A review of silicon carbide development in MEMS applications. Int J Comput Mater Sci Surf Eng 2009, 2: 227.

    Google Scholar 

  35. [35]

    Vasiliev AA, Pisliakov AV, Sokolov AV, et al. Non-silicon MEMS platforms for gas sensors. Sensor Actuat B: Chem 2016, 224: 700–713.

    CAS  Article  Google Scholar 

  36. [36]

    Hassanin H, Jiang K. Alumina composite suspension preparation for softlithography microfabrication. Microelectron Eng 2009, 86: 929–932.

    CAS  Article  Google Scholar 

  37. [37]

    Schulz M. Polymer derived ceramics in MEMS/NEMS-a review on production processes and application. Adv Appl Ceram 2009, 108: 454–460.

    CAS  Article  Google Scholar 

  38. [38]

    Brigo L, Schmidt JEM, Gandin A, et al. 3D nanofabrication of SiOC ceramic structures. Adv Sci 2018, 5: 1800937.

    Article  CAS  Google Scholar 

  39. [39]

    Schmidt J, Brigo L, Gandin A, et al. Multiscale ceramic components from preceramic polymers by hybridization of vat polymerization-based technologies. Addit Manuf 2019, 30: 100913.

    Google Scholar 

  40. [40]

    Smith GL, Pulskamp JS, Sanchez LM, et al. PZT-based piezoelectric MEMS technology. J Am Ceram Soc 2012, 95: 1777–1792.

    CAS  Article  Google Scholar 

  41. [41]

    Gomes C, Greil P, Travitzky N, et al. Laminated Object Manufacturing (LOM) of glass ceramics substrates for LTCC applications. In: Innovative Developments in Design and Manufacturing. CRC Press, 2009: 239–244.

    Google Scholar 

  42. [42]

    Yoon YJ, Choi JK, Lim JW, et al. Microfluidic devices fabricated by LTCC combined with thick film lithography. Adv Mater Res 2009, 74: 303–306.

    Article  Google Scholar 

  43. [43]

    Van Tassel JJ, Randall CA. Micron scale conductors and integrated passives in LTCC's by electrophoretic deposition. In: Proceedings of the 1st International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies, 2005: 190–193.

    Google Scholar 

  44. [44]

    Wilkinson NJ, Smith MAA, Kay RW, et al. A review of aerosol jet printing-a non-traditional hybrid process for micro-manufacturing. Int J Adv Manuf Technol 2019, 105: 4599–4619.

    Article  Google Scholar 

  45. [45]

    Zaraska K, Machnik M, Bienkowski A, et al. Depth of laser etching in green state LTCC. In: Proceedings of the 8th International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies, 2012: 136–141.

    Google Scholar 

  46. [46]

    Steinhäuβer F, Hradil K, Schwarz S, et al. Wet chemical porosification of LTCC in phosphoric acid: Celsian forming tapes. J Eur Ceram Soc 2015, 35: 4465–4473.

    Article  CAS  Google Scholar 

  47. [47]

    Rathnayake-Arachchige D, Hutt DA, Conway PP. Excimer laser machining of fired LTCC for selectively metallized open channel structures. Int Symp Microelectron 2013, 2013: 000194–000199.

    Article  Google Scholar 

  48. [48]

    Canonica MD, Wardle BL, Lozano PC. Micro-patterning of porous alumina layers with aligned nanopores. J Micromech Microeng 2015, 25: 015017.

    Article  CAS  Google Scholar 

  49. [49]

    El-Sayed MA, Hassanin H, Essa K. Effect of casting practice on the reliability of Al cast alloys. Int J Cast Met Res 2016, 29: 350–354.

    CAS  Article  Google Scholar 

  50. [50]

    Hassanin H, Ostadi H, Jiang K. Surface roughness and geometrical characterization of ultra-thick micro moulds for ceramic micro fabrication using soft lithography. Int J Adv Manuf Technol 2013, 67: 2293–2300.

    Article  Google Scholar 

  51. [51]

    Hassanin H, Ahmed El-Sayed M, ElShaer A, et al. Microfabrication of net shape zirconia/alumina nanocomposite micro parts. Nanomaterials 2018, 8: 593.

    Article  CAS  Google Scholar 

  52. [52]

    Thomas P, Levenfeld B, Várez A, et al. Production of alumina microparts by powder injection molding. Int J Appl Ceram Technol 2011, 8: 617–626.

    CAS  Article  Google Scholar 

  53. [53]

    Uchikoshi T, Furumi S, Suzuki T, et al. Direct shaping of alumina ceramics by electrophoretic deposition using conductive polymer-coated ceramic substrates. Adv Mater Res 2007, 29-30: 227–230.

    CAS  Article  Google Scholar 

  54. [54]

    Shannon T, Blackburn S. The production of alumina/ zirconia laminated composites by o-extrusion. In: Proceedings of the 19th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures-B: Ceramic Engineering and Science Proceedings, 1995, 16: 1115–1120.

    CAS  Google Scholar 

  55. [55]

    Tak HS, Ha CS, Lee HJ, et al. Characteristic evaluation of Al2O3/CNTs hybrid materials for micro-electrical discharge machining. Trans Nonferrous Met Soc China 2011, 21: s28–s32.

    Article  Google Scholar 

  56. [56]

    Hassanin H, Jiang K. Optimized process for the fabrication of zirconia micro parts. Microelectron Eng 2010, 87: 1617–1619.

    CAS  Article  Google Scholar 

  57. [57]

    Rheaume JM, Pisano AP. Surface micromachining of unfired ceramic sheets. Microsyst Technol 2011, 17: 133–142.

    CAS  Article  Google Scholar 

  58. [58]

    Vulcano Rossi VA, Mullen MR, Karker NA, et al. Microfabricated electrochemical sensors for combustion applications. In: Proceedings of the SPIE 9491, Sensors for Extreme Harsh Environments II, 2015: 94910J.

    Google Scholar 

  59. [59]

    Yu PC, Li QF, Fuh JYH, et al. Micro injection molding of micro gear using nano-sized zirconia powder. Microsyst Technol 2009, 15: 401–406.

    CAS  Article  Google Scholar 

  60. [60]

    Cao. Growth of oxide nanorod arrays through Sol electrophoretic deposition. J Phys Chem B 2004, 108: 19921–19931.

    CAS  Article  Google Scholar 

  61. [61]

    Zorman CA, Parro RJ. Micro- and nanomechanical structures for silicon carbide MEMS and NEMS. Phys Stat Sol (b) 2008, 245: 1404–1424.

    CAS  Article  Google Scholar 

  62. [62]

    Youn SW, Okuyama C, Takahashi M, et al. Replication of nano/micro quartz mold by hot embossing and its application to borosilicate glass embossing. Int J Mod Phys B 2008, 22: 6118–6123.

    CAS  Article  Google Scholar 

  63. [63]

    Chen BK, Zhang Y, Sun Y. Novel mems grippers capable of both grasping and active release of micro objects. In: Proceedings of the 15th International Conference on Solid-State Sensors, Actuators and Microsystems, 2009: 2389–2392.

    Google Scholar 

  64. [64]

    Yang CT, Ho SS, Yan BH. Micro hole machining of borosilicate glass through electrochemical discharge machining (ECDM). Key Eng Mater 2001, 196: 149–166.

    CAS  Article  Google Scholar 

  65. [65]

    Amnache A, Neumann J, Frechette LG. Capabilities and limits to form high aspect-ratio microstructures by molding of borosilicate glass. J Microelectromech Syst 2019, 28: 432–440.

    CAS  Article  Google Scholar 

  66. [66]

    Gu-Stoppel S, Stenchly V, Kaden D, et al. New designs for MEMS-micromirrors and micromirror packaging with electrostatic and piezoelectric drive. Advanced Manufacturing, Electronics and Microsystems: TechConnect Briefs 2016, 2016: 87–90.

    Google Scholar 

  67. [67]

    Stenchly V, Quenzer HJ, Hofmann U, et al. New fabrication method of glass packages with inclined optical windows for micromirrors on wafer level. In: Proceedings of the SPIE 8613, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics VI, 2013: 861319.

    Google Scholar 

  68. [68]

    Schulz M. Polymer derived ceramics in MEMS/NEMS-A review on production processes and application. Adv Appl Ceram 2009, 108: 454–460.

    CAS  Article  Google Scholar 

  69. [69]

    Tolvanen J, Hannu J, Juuti J, et al. Piezoelectric flexible LCP-PZT composites for sensor applications at elevated temperatures. Electron Mater Lett 2018, 14: 113–123.

    CAS  Article  Google Scholar 

  70. [70]

    Gorjan L, Lusiola T, Scharf D, et al. Kinetics and equilibrium of eco-debinding of PZT ceramics shaped by thermoplastic extrusion. J Eur Ceram Soc 2017, 37: 5273–5280.

    CAS  Article  Google Scholar 

  71. [71]

    Chen XY, Chen RM, Chen ZY, et al. Transparent lead lanthanum zirconate titanate (PLZT) ceramic fibers for high-frequency ultrasonic transducer applications. Ceram Int 2016, 42: 18554–18559.

    CAS  Article  Google Scholar 

  72. [72]

    Montalba C, Ramam K, Eskin DG, et al. Fabrication of a novel hybrid AlMg5/SiC/PLZT metal matrix composite produced by hot extrusion. Mater Des 2015, 69: 213–218.

    CAS  Article  Google Scholar 

  73. [73]

    Carponcin D, Dantras E, Michon G, et al. New hybrid polymer nanocomposites for passive vibration damping by incorporation of carbon nanotubes and lead zirconate titanate particles. J Non-Cryst Solids 2015, 409: 20–26.

    CAS  Article  Google Scholar 

  74. [74]

    Rai-Choudhury P. Handbook of Microlithography, Micromachining, and Microfabrication. Volume 1: Microlithography. SPIE Press, 1997.

    Google Scholar 

  75. [75]

    Qiu CL, Adkins NJE, Hassanin H, et al. In-situ shelling via selective laser melting: Modelling and microstructural characterisation. Mater Des 2015, 87: 845–853.

    Article  Google Scholar 

  76. [76]

    Sabouri A, Yetisen AK, Sadigzade R, et al. Three dimensional microstructured lattices for oil sensing. Energy Fuels 2017, 31: 2524–2529.

    CAS  Article  Google Scholar 

  77. [77]

    Essa K, Jamshidi P, Zou J, et al. Porosity control in 316L stainless steel using cold and hot isostatic pressing. Mater Des 2018, 138: 21–29.

    CAS  Article  Google Scholar 

  78. [78]

    Klippstein H, Hassanin H, Diaz de Cerio Sanchez A, et al. Additive manufacturing of porous structures for unmanned aerial vehicles applications. Adv Eng Mater 2018, 20: 1800290.

    Article  CAS  Google Scholar 

  79. [79]

    Al-Hashimi N, Begg N, Alany R, et al. Oral modified release multiple-unit particulate systems: Compressed pellets, microparticles and nanoparticles. Pharmaceutics 2018, 10: 176.

    Article  CAS  Google Scholar 

  80. [80]

    Mohammed A, Elshaer A, Sareh P, et al. Additive manufacturing technologies for drug delivery applications. Int J Pharm 2020, 580: 119245.

    Article  CAS  Google Scholar 

  81. [81]

    Chu GTM, Brady GA, Miao WG, et al. Ceramic SFF by direct and indirect stereolithography. MRS Proc 1998, 542: 119.

    Article  Google Scholar 

  82. [82]

    Ding G, He R, Zhang K, et al. Stereolithography-based additive manufacturing of gray-colored SiC ceramic green body. J Am Ceram Soc 2019, 102: 7198–7209.

    CAS  Article  Google Scholar 

  83. [83]

    De Hazan Y, Penner D. SiC and SiOC ceramic articles produced by stereolithography of acrylate modified polycarbosilane systems. J Eur Ceram Soc 2017, 37: 5205–5212.

    CAS  Article  Google Scholar 

  84. [84]

    He RJ, Ding GJ, Zhang KQ, et al. Fabrication of SiC ceramic architectures using stereolithography combined with precursor infiltration and pyrolysis. Ceram Int 2019, 45: 14006–14014.

    CAS  Article  Google Scholar 

  85. [85]

    Wang XF, Schmidt F, Hanaor D, et al. Additive manufacturing of ceramics from preceramic polymers: A versatile stereolithographic approach assisted by thiol-ene click chemistry. Addit Manuf 2019, 27: 80–90.

    CAS  Google Scholar 

  86. [86]

    Liu W, Wu HD, Tian Z, et al. 3D printing of dense structural ceramic microcomponents with low cost: Tailoring the sintering kinetics and the microstructure evolution. J Am Ceram Soc 2019, 102: 2257–2262.

    CAS  Article  Google Scholar 

  87. [87]

    Varadan VK, Varadan VV. Micro stereo lithography for fabrication of 3D polymeric and ceramic MEMS. In: Proceedings of the SPIE 4407, MEMS Design, Fabrication, Characterization, and Packaging, 2001: 147–157.

    Google Scholar 

  88. [88]

    Zheng X, Lee H, Weisgraber T. Ultralight, ultrastiff mechanical metamaterials. Science 2014, 344: 1373–1377.

    CAS  Article  Google Scholar 

  89. [89]

    Song X, Chen ZY, Lei LW, et al. Piezoelectric component fabrication using projection-based stereolithography of barium titanate ceramic suspensions. Rapid Prototyp J 2017, 23: 44–53.

    Article  Google Scholar 

  90. [90]

    Chen WC, Wang FF, Yan K, et al. Micro-stereolithography of KNN-based lead-free piezoceramics. Ceram Int 2019, 45: 4880–4885.

    CAS  Article  Google Scholar 

  91. [91]

    Eckel ZC, Zhou C, Martin JH, et al. Additive manufacturing of polymer-derived ceramics. Science 2016, 351: 58–62.

    CAS  Article  Google Scholar 

  92. [92]

    Wang M, Xie C, He R, et al. Polymer-derived silicon nitride ceramics by digital light processing based additive manufacturing. J Am Ceram Soc 2019, 102: 5117–5126.

    CAS  Article  Google Scholar 

  93. [93]

    Schmidt J, Colombo P. Digital light processing of ceramic components from polysiloxanes. J Eur Ceram Soc 2018, 38: 57–66.

    Article  CAS  Google Scholar 

  94. [94]

    Schmidt J, Altun AA, Schwentenwein M, et al. Complex mullite structures fabricated via digital light processing of a preceramic polysiloxane with active alumina fillers. J Eur Ceram Soc 2019, 39: 1336–1343.

    CAS  Article  Google Scholar 

  95. [95]

    Hatzenbichler M, Geppert M, Gruber S, et al. DLP-based light engines for additive manufacturing of ceramic parts. In: Proceedings of the SPIE 8254, Emerging Digital Micromirror Device Based Systems and Applications IV, 2012: 82540E.

    Google Scholar 

  96. [96]

    Ware HOT, Sun C. Method for attaining dimensionally accurate conditions for high-resolution three-dimensional printing ceramic composite structures using MicroCLIP process. J Micro Nano-Manuf 2019, 7: 031001.

    Article  CAS  Google Scholar 

  97. [97]

    Galatas A, Hassanin H, Zweiri Y, et al. Additive manufactured sandwich composite/ABS parts for unmanned aerial vehicle applications. Polymers 2018, 10: 1262.

    Article  CAS  Google Scholar 

  98. [98]

    Klippstein H, Diaz de Cerio Sanchez A, Hassanin H, et al. Fused deposition modeling for unmanned aerial vehicles (UAVs): A review. Adv Eng Mater 2018, 20: 1700552.

    Article  CAS  Google Scholar 

  99. [99]

    Huang W, Zhang XL, Wu Q, et al. Fabrication of HA/β-TCP scaffolds based on micro-syringe extrusion system. Rapid Prototyp J 2013, 19: 319–326.

    Article  Google Scholar 

  100. [100]

    Cai K, Román-Manso B, Smay JE, et al. Geometrically complex silicon carbide structures fabricated by robocasting. J Am Ceram Soc 2012, 95: 2660–2666.

    CAS  Article  Google Scholar 

  101. [101]

    Touri M, Moztarzadeh F, Osman NAA, et al. Optimisation and biological activities of bioceramic robocast scaffolds provided with an oxygen-releasing coating for bone tissue engineering applications. Ceram Int 2019, 45: 805–816.

    CAS  Article  Google Scholar 

  102. [102]

    Colombo P, Schmidt J, Franchin G, et al. Additive manufacturing techniques for fabricating complex ceramic components from preceramic polymers. Am Ceram Soc Bull 2017, 96: 16–23.

    CAS  Google Scholar 

  103. [103]

    El-Sayed MA, Essa K, Ghazy M, et al. Design optimization of additively manufactured titanium lattice structures for biomedical implants. Int J Adv Manuf Technol 2020, 110: 2257–2268.

    Article  Google Scholar 

  104. [104]

    Hassanin H, Al-Kinani AA, ElShaer A, et al. Stainless steel with tailored porosity using canister-free hot isostatic pressing for improved osseointegration implants. J Mater Chem B 2017, 5: 9384–9394.

    CAS  Article  Google Scholar 

  105. [105]

    Tolipov A, Elghawail A, Abosaf M, et al. Multipoint forming using mesh-type elastic cushion: Modelling and experimentation. Int J Adv Manuf Technol 2019, 103: 2079–2090.

    Article  Google Scholar 

  106. [106]

    Hassanin H, Alkendi Y, Elsayed M, et al. Controlling the properties of additively manufactured cellular structures using machine learning approaches. Adv Eng Mater 2020, 22: 1901338.

    Article  CAS  Google Scholar 

  107. [107]

    Cox SC, Jamshidi P, Eisenstein NM, et al. Adding functionality with additive manufacturing: Fabrication of titanium-based antibiotic eluting implants. Mater Sci Eng: C 2016, 64: 407–415.

    CAS  Article  Google Scholar 

  108. [108]

    Essa K, Khan R, Hassanin H, et al. An iterative approach of hot isostatic pressing tooling design for net-shape IN718 superalloy parts. Int J Adv Manuf Technol 2016, 83: 1835–1845.

    Article  Google Scholar 

  109. [109]

    Regenfuss P, Streek A, Hartwig L, et al. Principles of laser micro sintering. Rapid Prototyp J 2007, 13: 204–212.

    Article  Google Scholar 

  110. [110]

    Petsch T, Regenfuβ P, Ebert R, et al. Industrial laser micro sintering. In: Proceedings of the 23rd International Congress on Applications of Laser and Electro-Optics, 2004.

    Google Scholar 

  111. [111]

    Chen J, Yang J, Zuo T. Micro fabrication with selective laser micro sintering. In: Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2006: 426–429.

    Google Scholar 

  112. [112]

    Streek A, Regenfuβ P, Süβ T, et al. Laser micro sintering of SiO2 with an NIR-laser. In: Proceedings of the SPIE 6985, Fundamentals of Laser Assisted Micro- and Nanotechnologies, 2008: 69850Q.

    Google Scholar 

  113. [113]

    Essa K, Hassanin H, Attallah MM, et al. Development and testing of an additively manufactured monolithic catalyst bed for HTP thruster applications. Appl Catal A: Gen 2017, 542: 125–135.

    CAS  Article  Google Scholar 

  114. [114]

    Windsheimer H, Travitzky N, Hofenauer A, et al. Laminated object manufacturing of preceramic-paperderived Si-SiC composites. Adv Mater 2007, 19: 4515–4519.

    CAS  Article  Google Scholar 

  115. [115]

    Shama A. Study of Microfluidic Mixing and Droplet Generation for 3D Printing of Nuclear Fuels. EPFL, 2017.

    Google Scholar 

  116. [116]

    Derby B. Inkjet printing of functional and structural materials: Fluid property requirements, feature stability, and resolution. Annu Rev Mater Res 2010, 40: 395–414.

    CAS  Article  Google Scholar 

  117. [117]

    Derby B. Materials opportunities in layered manufacturing technology. J Mater Sci 2002, 37: 3091–3092.

    CAS  Article  Google Scholar 

  118. [118]

    Zhao XL, Evans JRG, Edirisinghe MJ, et al. Direct ink-jet printing of vertical walls. J Am Ceram Soc 2002, 85: 2113–2115.

    CAS  Article  Google Scholar 

  119. [119]

    Hill S. Micromoulding-A small injection of technology. Mater World 2001, 9: 24–25.

    CAS  Google Scholar 

  120. [120]

    Griffiths CA, Dimov SS, Brousseau EB, et al. The effects of tool surface quality in micro-injection moulding. J Mater Process Technol 2007, 189: 418–427.

    CAS  Article  Google Scholar 

  121. [121]

    Stone VN, Baldock SJ, Croasdell LA, et al. Free flow isotachophoresis in an injection moulded miniaturised separation chamber with integrated electrodes. J Chromatogr A 2007, 1155: 199–205.

    CAS  Article  Google Scholar 

  122. [122]

    Hill SDJ, Kamper KP, Dasbach U, et al. An investigation of computer modelling for micro-injection moulding. In: Simulation and Design of Microsystems and Microstructures. Southampton, 1995: 275–283.

    Google Scholar 

  123. [123]

    Liu ZY, Loh NH, Tor SB, et al. Micro-powder injection molding. J Mater Process Technol 2002, 127: 165–168.

    CAS  Article  Google Scholar 

  124. [124]

    Loh NH, Tor SB, Tay BY, et al. Fabrication of micro gear by micro powder injection molding. Microsyst Technol 2007, 14: 43–50.

    Article  CAS  Google Scholar 

  125. [125]

    Michrafy A, Dodds JA, Kadiri MS. Wall friction in the compaction of pharmaceutical powders: Measurement and effect on the density distribution. Powder Technol 2004, 148: 53–55.

    CAS  Article  Google Scholar 

  126. [126]

    Lee SC, Kim KT. A study on the cap model for metal and ceramic powder under cold compaction. Mater Sci Eng: A 2007, 445-446: 163–169.

    Article  CAS  Google Scholar 

  127. [127]

    Piotter V, Plewa K, Mueller T, et al. Manufacturing of high-grade micro components by powder injection molding. Key Eng Mater 2010, 447-448: 351–355.

    CAS  Article  Google Scholar 

  128. [128]

    Attia UM, Alcock JR. Fabrication of ceramic micro-scale hollow components by micro-powder injection moulding. J Eur Ceram Soc 2012, 32: 1199–1204.

    CAS  Article  Google Scholar 

  129. [129]

    Yoo JH, Gao W. Near-net ceramic micro-tubes fabricated by electrophoretic deposition process. Int J Mod Phys B 2003, 17: 1147–1151.

    CAS  Article  Google Scholar 

  130. [130]

    Sarkar P, Prakash O, Wang G, et al. Micro-laminate ceramic/ceramic composites (YSZ/Al2O3) by electrophoretic deposition. In: Proceedings of the 18th Annual Conference on Composites and Advanced Ceramic Materials-B: Ceramic Engineering and Science Proceedings, 15: 1019–1027.

  131. [131]

    Von Both H, Dauscher M, Hauβelt J. Fabrication of microstructured ceramics by electrophoretic deposition of optimized suspensions. In: Proceedings of the 28th International Conference on Advanced Ceramics and Composites A: Ceramic Engineering and Science Proceedings, 2004: 135–140.

    Google Scholar 

  132. [132]

    Bonnas S, Ritzhaupt-Kleissl HJ, Hauβelt J. Electrophoretic deposition for fabrication of ceramic microparts. J Eur Ceram Soc 2010, 30: 1159–1162.

    CAS  Article  Google Scholar 

  133. [133]

    Laubersheimer J, Ritzhaupt-Kleissl H-J, Hauβelt J, et al. Electrophoretic deposition of sol-gel ceramic microcomponents using UV-curable alkoxide precursors. J Eur Ceram Soc 1998, 18: 255–260.

    CAS  Article  Google Scholar 

  134. [134]

    Zaman AC, Üstündag CB, Kuskonmaz N, et al. 3-D micro-ceramic components from hydrothermally processed carbon nanotube-boehmite powders by electrophoretic deposition. Ceram Int 2010, 36: 1703–1710.

    CAS  Article  Google Scholar 

  135. [135]

    Kastyl J, Chlup Z, Clemens F, et al. Ceramic core-shell composites with modified mechanical properties prepared by thermoplastic co-extrusion. J Eur Ceram Soc 2015, 35: 2873–2881.

    CAS  Article  Google Scholar 

  136. [136]

    Soydan AM, Yildiz Ö, Akduman OY, et al. A new approach for production of anode microtubes as solid oxide fuel cell support. Ceram Int 2018, 44: 23001–23007.

    CAS  Article  Google Scholar 

  137. [137]

    Sharmin K, Schoegl I. Optimization of binder removal for ceramic microfabrication via polymer co-extrusion. Ceram Int 2014, 40: 3939–3946.

    CAS  Article  Google Scholar 

  138. [138]

    Sharmin K, Schoegl I. Processing and analysis of ceramic mesoscale combustors fabricated by co-extrusion. In: Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition. Volume 2A: Advanced Manufacturing, 2013: V02AT02A052.

    Google Scholar 

  139. [139]

    Powell J, Blackburn S. Co-extrusion of multilayered ceramic micro-tubes for use as solid oxide fuel cells. J Eur Ceram Soc 2010, 30: 2859–2870.

    CAS  Article  Google Scholar 

  140. [140]

    Alexander PW, Brei D, Halloran JW. DEPP functionally graded piezoceramics via micro-fabrication by co-extrusion. J Mater Sci 2007, 42: 5805–5814.

    CAS  Article  Google Scholar 

  141. [141]

    Hoy CV, Barda A, Griffith M, et al. Microfabrication of ceramics by Co-extrusion. J Am Ceram Soc 2005, 81: 152–158.

    Article  Google Scholar 

  142. [142]

    Hassanin H, Jiang K. Net shape manufacturing of ceramic micro parts with tailored graded layers. J Micromech Microeng 2014, 24: 015018.

    Article  CAS  Google Scholar 

  143. [143]

    Brittain S, Paul K, Zhao XM, et al. Soft lithography and microfabrication. Phys World 1998, 11: 31–37.

    CAS  Article  Google Scholar 

  144. [144]

    Xia YN, Whitesides GM. Soft lithography. Annu Rev Mater Sci 1998, 28: 153–184.

    CAS  Article  Google Scholar 

  145. [145]

    Rogers JA, Nuzzo RG. Recent progress in soft lithography. Mater Today 2005, 8: 50–56.

    CAS  Article  Google Scholar 

  146. [146]

    Brehmer M, Conrad L, Funk L. New developments in soft lithography. J Dispers Sci Technol 2003, 24: 291–304.

    CAS  Article  Google Scholar 

  147. [147]

    Harris TW. Chemical Milling. Oxford: Clarendon Press, 1976.

    Google Scholar 

  148. [148]

    Wang W, Soper SA. BioMEMS: Technologies and Applications. CRC Press, Taylor & Francis Group, LLC, 2007.

  149. [149]

    Helbert JN. Handbook of Vlsi Microlithography. William Andrew Publishing, LLC, Norwich, New York, USA, 2001.

    Google Scholar 

  150. [150]

    Lorenz H, Despont M, Fahrnl N, et al. SU-8: A low-cost negative resist for MEMS. In: Proceedings of the 7th Workshop on Micromachining, Micromechanics and Microsystems in Europe, 1997: 121–124.

    Google Scholar 

  151. [151]

    Mata A, Fleischman AJ, Roy S. Fabrication of multi-layer SU-8 microstructures. J Micromech Microeng 2006, 16: 276–284.

    Article  Google Scholar 

  152. [152]

    Roth S, Dellmann L, Racine GA, et al. High aspect ratio UV photolithography for electroplated structures. J Micromech Microeng 1999, 9: 105–108.

    CAS  Article  Google Scholar 

  153. [153]

    Bauer W, Knitter R, Emde A, et al. Replication techniques for ceramic microcomponents with high aspect ratios. Microsyst Technol 2002, 9: 81–86.

    CAS  Article  Google Scholar 

  154. [154]

    Zhang D, Su B, Button TW. Microfabrication of threedimensional, free-standing ceramic MEMS components by soft moulding. Adv Eng Mater 2003, 5: 924–927.

    CAS  Article  Google Scholar 

  155. [155]

    Zhang D, Su B, Button TW. Preparation of concentrated aqueous alumina suspensions for soft-molding microfabrication. J Eur Ceram Soc 2004, 24: 231–237.

    Article  CAS  Google Scholar 

  156. [156]

    Kim JS, Jiang K, Chang I. A net shape process for metallic microcomponent fabrication using Al and Cu micro/nano powders. J Micromech Microeng 2006, 16: 48–52.

    CAS  Article  Google Scholar 

  157. [157]

    Imbaby M, Jiang K, Chang I. Fabrication of 316-L stainless steel micro parts by softlithography and powder metallurgy. Mater Lett 2008, 62: 4213–4216.

    CAS  Article  Google Scholar 

  158. [158]

    Hassanin H, Jiang K. Multiple replication of thick PDMS micropatterns using surfactants as release agents. Microelectron Eng 2011, 88: 3275–3277.

    CAS  Article  Google Scholar 

  159. [159]

    Heule M, Schönholzer UP, Gauckler LJ. Patterning colloidal suspensions by selective wetting of microcontactprinted surfaces. J Eur Ceram Soc 2004, 24: 2733–2739.

    CAS  Article  Google Scholar 

  160. [160]

    Lee JH, Hon MH, Chung YW, et al. Microcontact printing of organic self-assembled monolayers for patterned growth of well-aligned ZnO nanorod arrays and their field-emission properties. J Am Ceram Soc 2009, 92: 2192–2196.

    CAS  Article  Google Scholar 

  161. [161]

    Nagata H, Ko SW, Hong E, et al. Microcontact printed BaTiO3 and LaNiO3 thin films for capacitors. J Am Ceram Soc 2006, 89: 2816–2821.

    CAS  Google Scholar 

  162. [162]

    Zhao XM, Xia YN, Whitesides GM. Fabrication of three-dimensional micro-structures: Microtransfer molding. Adv Mater 1996, 8: 837–840.

    CAS  Article  Google Scholar 

  163. [163]

    Zhang D, Su B, Button TW. Preparation of concentrated aqueous alumina suspensions for soft-molding microfabrication. J Eur Ceram Soc 2004, 24: 231–237.

    Article  CAS  Google Scholar 

  164. [164]

    Moon J, Kang C, Cho S. Microtransfer molding of gelcasting suspensions to fabricate barrier ribs for plasma display panel. J Am Ceram Soc 2003, 86: 1969–1972.

    CAS  Article  Google Scholar 

  165. [165]

    Heule M, Schell J, Gauckler LJ. Powder-based tin oxide microcomponents on silicon substrates fabricated by micromolding in capillaries. J Am Ceram Soc 2003, 86: 407–12.

    CAS  Article  Google Scholar 

  166. [166]

    Heule M, Gauckler LJ. Gas sensors fabricated from ceramic suspensions by micromolding in capillaries. Adv Mater 2001, 13: 1790–1793.

    CAS  Article  Google Scholar 

  167. [167]

    Beh WS, Xia YN, Qin D. Formation of patterned microstructures of polycrystalline ceramics from precursor polymers using micromolding in capillaries. J Mater Res 1999, 14: 3995–4003.

    CAS  Article  Google Scholar 

  168. [168]

    Obreja P, Cristea D, Dinescu A, et al. Replica molding of polymeric components for microsystems. In: Proceedings of the 2009 Symposium on Design, Test, Integration & Packaging of MEMS/MOEMS, 2009: 349–352.

    Google Scholar 

  169. [169]

    Mukherjee R, Patil GK, Sharma A. Solvent vapor-assisted imprinting of polymer films coated on curved surfaces with flexible PVA stamps. Ind Eng Chem Res 2009, 48: 8812–8818.

    CAS  Article  Google Scholar 

  170. [170]

    Lawrence JR, Turnbull GA, Samuel IDW. Polymer laser fabricated by a simple micromolding process. Appl Phys Lett 2003, 82: 4023–4025.

    CAS  Article  Google Scholar 

  171. [171]

    Schönholzer UP, Gauckler LJ. Ceramic parts patterned in the micrometer range. Adv Mater 1999, 11: 630–632.

    Article  Google Scholar 

  172. [172]

    Schönholzer UP, Hummel R, Gauckler LJ. Microfabrication of ceramics by filling of photoresist molds. Adv Mater 2000, 12: 1261–1263.

    Article  Google Scholar 

  173. [173]

    Hassanin H, Jiang K. Fabrication and characterization of stabilised zirconia micro parts via slip casting and soft moulding. Scripta Mater 2013, 69: 433–436.

    CAS  Article  Google Scholar 

  174. [174]

    Zhu ZG, Hassanin H, Jiang K. A soft moulding process for manufacture of net-shape ceramic microcomponents. Int J Adv Manuf Technol 2010, 47: 147–152.

    Article  Google Scholar 

  175. [175]

    Hassanin H, Ostadi H, Jiang K. Surface roughness and geometrical characterization of ultra-thick micro moulds for ceramic micro fabrication using soft lithography. Int J Adv Manuf Technol 2013, 67: 2293–2300.

    Article  Google Scholar 

  176. [176]

    Hassanin H, Jiang K. Net shape manufacturing of ceramic micro parts with tailored graded layers. J Micromech Microeng 2014, 24: 015018.

    Article  CAS  Google Scholar 

  177. [177]

    Hassanin H, Jiang K. Infiltration-processed, functionally graded materials for microceramic componenets. In: Proceedings of the 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems, 2010: 368–371.

    Google Scholar 

  178. [178]

    Piotter V, Bauer W, Knitter R, et al. Powder injection moulding of metallic and ceramic micro parts. Microsyst Technol 2011, 17: 251–263.

    CAS  Article  Google Scholar 

  179. [179]

    Corni I, Ryan MP, Boccaccini AR. Electrophoretic deposition: From traditional ceramics to nanotechnology. J Eur Ceram Soc 2008, 28: 1353–1367.

    CAS  Article  Google Scholar 

  180. [180]

    Ten Elshof JE, Khan SU, Göbel OF. Micrometer and nanometer-scale parallel patterning of ceramic and organic-inorganic hybrid materials. J Eur Ceram Soc 2010, 30: 1555–1577.

    CAS  Article  Google Scholar 

  181. [181]

    Chang YF, Chou QR, Lin JY, et al. Fabrication of high-aspect-ratio silicon nanopillar arrays with the conventional reactive ion etching technique. Appl Phys A 2006, 86: 193–196.

    Article  CAS  Google Scholar 

  182. [182]

    Sammak A, Azimi S, Izadi N, et al. Deep vertical etching of silicon wafers using a hydrogenation-assisted reactive ion etching. J Microelectromech Syst 2007, 16: 912–918.

    Article  Google Scholar 

  183. [183]

    Liu S, Guillet B, Adamo C, et al. Free-standing La0.7Sr0.3MnO3 suspended micro-bridges on buffered silicon substrates showing undegraded low frequency noise properties. J Micromech Microeng 2019, 29: 065008.

    Article  CAS  Google Scholar 

  184. [184]

    Zhang JS, Ren W, Jing XP, et al. Deep reactive ion etching of PZT ceramics and PMN-PT single crystals for high frequency ultrasound transducers. Ceram Int 2015, 41: S656–S661.

    CAS  Article  Google Scholar 

  185. [185]

    Chow HM, Yan BH, Huang FY. Micro slit machining using electro-discharge machining with a modified rotary disk electrode (RDE). J Mater Process Technol 1999, 91: 161–166.

    Article  Google Scholar 

  186. [186]

    Weng FT, Shyu RF, Hsu CS. Fabrication of microelectrodes by multi-EDM grinding process. J Mater Process Technol 2003, 140: 332–334.

    CAS  Article  Google Scholar 

  187. [187]

    Chen ST. Fabrication of high-density micro holes by upward batch micro EDM. J Micromech Microeng 2008, 18: 085002.

    Article  CAS  Google Scholar 

  188. [188]

    Egashira K, Mizutani K. Micro-drilling of monocrystalline silicon using a cutting tool. Precis Eng 2002, 26: 263–268.

    Article  Google Scholar 

  189. [189]

    Phatthanakun R, Songsiriritthigul P, Klysubun P, et al. Multi-step powder casting and X-ray lithography of SU-8 resist for complicated 3D microstructures. In: Proceedings of the 2008 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2008: 805–808

    Google Scholar 

  190. [190]

    Saxena KK, Agarwal S, Khare SK. Surface characterization, material removal mechanism and material migration study of micro EDM process on conductive SiC. Procedia CIRP 2016, 42: 179–184.

    Article  Google Scholar 

  191. [191]

    Ojha N, Zeller F, Müller C, et al. Comparative study on parametric analysis of μEDM of non-conductive ceramics. Key Eng Mater 2014, 611-612: 693–700.

    Article  Google Scholar 

  192. [192]

    Zhang HF, Liu YH, Chen JM, et al. Experimental research on pulse generator for EDM of non-conductive ceramics. Key Eng Mater 2009, 407-408: 649–653.

    CAS  Article  Google Scholar 

  193. [193]

    Pallav K, Ehmann KF. Feasibility of laser induced plasma micro-machining (LIP-MM). In: Precision Assembly Technologies and Systems. IFIP Advances in Information and Communication Technology, Vol. 315. Ratchev S, Ed. Springer Berlin Heidelberg, 2010: 73–80.

    Google Scholar 

  194. [194]

    Chen J, Yin Y. Laser micro-fabrication in RF MEMS switches. In: Proceedings of the 2009 13th International Symposium on Antenna Technology and Applied Electromagnetics and the Canadian Radio Sciences Meeting, 2009: 1–5.

    Google Scholar 

  195. [195]

    Amer MS, Dosser L, LeClair S, et al. Induced stresses and structural changes in silicon wafers as a result of laser micro-machining. Appl Surf Sci 2002, 187: 291–296.

    CAS  Article  Google Scholar 

  196. [196]

    Amer MS, El-Ashry MA, Dosser LR, et al. Femtosecond versus nanosecond laser machining: Comparison of induced stresses and structural changes in silicon wafers. Appl Surf Sci 2005, 242: 162–167.

    CAS  Article  Google Scholar 

  197. [197]

    Rihakova L, Chmelickova H. Laser micromachining of glass, silicon, and ceramics. Adv Mater Sci Eng 2015, 2015: 1–6.

    Article  Google Scholar 

  198. [198]

    Knowles MRH, Rutterford G, Karnakis D, et al. Laser micro-milling of ceramics, dielectrics and metals using nanosecond and picosecond lasers. In: Proceedings of the 4M 2006 - Second International Conference on Multi-Material Micro Manufacture, 2006: 131–134.

  199. [199]

    Kim SH, Balasubramani T, Sohn I-B, et al. Precision microfabrication of AlN and Al2O3 ceramics by femtosecond laser ablation. In: Proceedings of the SPIE 6879, Photon Processing in Microelectronics and Photonics VII, 2008: 68791O.

    Google Scholar 

  200. [200]

    Kacar E, Mutlu M, Akman E, et al. Characterization of the drilling alumina ceramic using Nd:YAG pulsed laser. J Mater Process Technol 2009, 209: 2008–2014.

    CAS  Article  Google Scholar 

  201. [201]

    Ferraris E, Vleugels J, Galbiati M, et al. Investigation of micro electrical discharge machining (EDM) performance of TiB2. In: Proceedings of the 16th International Symposium on Electromachining, 2010: 555–560.

    Google Scholar 

  202. [202]

    Wohlers T, Caffrey T, Campbell RI, et al. Wohlers Report 2018: 3D Printing and Additive Manufacturing State of the Industry; Annual Worldwide Progress Report. Wohlers Associates, 2018.

    Google Scholar 

  203. [203]

    Caffrey T. Wohlers Report 2015: Additive Manufacturing and 3D Printing. State of the Industry, Ft. Collins, CO: Wohlers Associates, 2015.

    Google Scholar 

  204. [204]

    Licciulli A, Esposito Corcione C, Greco A, et al. Laser stereolithography of ZrO2 toughened Al2O3. J Eur Ceram Soc 2005, 25: 1581–1589.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hany Hassanin.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hassanin, H., Essa, K., Elshaer, A. et al. Micro-fabrication of ceramics: Additive manufacturing and conventional technologies. J Adv Ceram 10, 1–27 (2021). https://doi.org/10.1007/s40145-020-0422-5

Download citation

Keywords

  • micro-electro-mechanical system (MEMS)
  • micro-fabrication
  • ceramics
  • micro parts
  • additive manufacturing