Enhanced thermal and cycling reliabilities in (K,Na)(Nb,Sb)O3-CaZrO3-(Bi,Na)HfO3 ceramics

Abstract

The thermal stability and fatigue resistance of piezoelectric ceramics are of great importance for industrialized application. In this study, the electrical properties of (0.99-x)(K0.48Na0.52)(Nb0.975Sb0.025)O3-0.01CaZrO3-x(Bi0.5Na0.5)HfO3 ceramics are investigated. When x = 0.03, the ceramics exhibit the optimal electrical properties at room temperature and high Curie temperature (TC = 253 °C). In addition, the ceramic has outstanding thermal stability (\(d_{33}^*\) ≈ 301 pm/V at 160 °C) and fatigue resistance (variation of Pr and \(d_{33}^*\) ~10% after 104 electrical cycles). Subsequently, the defect configuration and crystal structure of the ceramics are studied by X-ray diffraction, temperature-dielectric property curves and impedance analysis. On one hand, the doping (Bi0.5Na0.5)HfO3 makes the dielectric constant peaks flatten. On the other hand, the defect concentration and migration are obviously depressed in the doped ceramics. Both of them can enhance the piezoelectrical properties and improve the temperature and cycling reliabilities. The present study reveals that the good piezoelectric properties can be obtained in 0.96(K0.48Na0.52)(Nb0.975Sb0.025)O3-0.01CaZrO3-0.03(Bi0.5Na0.5) HfO3 ceramics.

References

  1. [1]

    Rödel J, Jo W, Seifert KTP, et al. Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 2009, 92: 1153–1177.

    Article  CAS  Google Scholar 

  2. [2]

    Jo W, Dittmer R, Acosta M, et al. Giant electric-field-induced strains in lead-free ceramics for actuator applications-status and perspective. J Electroceram 2012, 29: 71–93.

    CAS  Article  Google Scholar 

  3. [3]

    Moure C, Pena O. Recent advances in perovskites: Processing and properties. Prog Solid State Chem 2015, 43: 123–148.

    CAS  Article  Google Scholar 

  4. [4]

    Saito Y, Takao H, Tani T, et al. Lead-free piezoceramics. Nature 2004, 432: 84–87.

    CAS  Article  Google Scholar 

  5. [5]

    Wei HG, Wang H, Xia YJ, et al. An overview of lead-free piezoelectric materials and devices. J Mater Chem C 2018, 6: 12446–12467.

    CAS  Article  Google Scholar 

  6. [6]

    Li JF, Wang K, Zhu FY, et al. (K,Na)NbO3-based lead-free piezoceramics: Fundamental aspects, processing technologies, and remaining challenges. J Am Ceram Soc 2013, 96: 3677–3696.

    CAS  Article  Google Scholar 

  7. [7]

    Peng XY, Zhang BP, Zhu LF, et al. Multi-phase structure and electrical properties of Bi0.5Li0.5ZrO3 doping K0.48Na0.56NbO3 lead-free piezoelectric ceramics. J Adv Ceram 2018, 7: 79–87.

    CAS  Article  Google Scholar 

  8. [8]

    Prateek, Thakur VK, Gupta RK. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: Synthesis, dielectric properties, and future aspects. Chem Rev 2016, 116: 4260–4317.

    CAS  Article  Google Scholar 

  9. [9]

    Wang K, Li JF. (K,Na)NbO3-based lead-free piezoceramics: Phase transition, sintering and property enhancement. J Adv Ceram 2012, 1: 24–37.

    CAS  Article  Google Scholar 

  10. [10]

    Xu K, Li J, Lv X, et al. Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics. Adv Mater 2016, 28: 8519–8523.

    CAS  Article  Google Scholar 

  11. [11]

    Yao WZ, Zhang JL, Zhou CM, et al. Giant piezoelectricity, rhombohedral-orthorhombic-tetragonal phase coexistence and domain configurations of (K, Na)(Nb, Sb)O3-BiFeO3-(Bi, Na)ZrO3 ceramics. J Eur Ceram Soc 2020, 40: 1223–1231.

    CAS  Article  Google Scholar 

  12. [12]

    Zhang JL, Sun X, Su WB, et al. Superior piezoelectricity and rhombohedral-orthorhombic-tetragonal phase coexistence of (l-x)(K,Na)(Nb,Sb)O3-x(Bi,Na)HfO3 ceramics. Scr Mater 2020, 176: 108–111.

    CAS  Article  Google Scholar 

  13. [13]

    Zhang SJ, Xia R, Shrout TR. Lead-free piezoelectric ceramics vs. PZT? J Electroceram 2007, 19: 251–257.

    Article  CAS  Google Scholar 

  14. [14]

    Quan Y, Ren W, Niu G, et al. Large piezoelectric strain with superior thermal stability and excellent fatigue resistance of lead-free potassium sodium niobate-based grain orientation-controlled ceramics. ACS Appl Mater Interfaces 2018, 10: 10220–10226.

    CAS  Article  Google Scholar 

  15. [15]

    Koruza J, Bell AJ, Frömling T, et al. Requirements for the transfer of lead-free piezoceramics into application. J Materiomics 2018, 4: 13–26.

    Article  Google Scholar 

  16. [16]

    Fang MX, Rajput S, Dai ZH, et al. Understanding the mechanism of thermal-stable high-performance piezoelectricity. ActaMater 2019, 169: 155–161.

    CAS  Google Scholar 

  17. [17]

    Hinterstein M, Hoelzel M, Rouquette J, et al. Interplay of strain mechanisms in morphotropic piezoceramics. Acta Mater 2015, 94: 319–327.

    CAS  Article  Google Scholar 

  18. [18]

    Li P, Chen XQ, Wang FF, et al. Microscopic insight into electric fatigue resistance and thermally stable piezoelectric properties of (K,Na)NbO3-based ceramics. ACS Appl Mater Interfaces 2018, 10: 28772–28779.

    CAS  Article  Google Scholar 

  19. [19]

    Lv X, Wu JG, Zhu JG, et al. Temperature stability and electrical properties in La-doped KNN-based ceramics. J Am Ceram Soc 2018, 101: 4084–4094.

    CAS  Article  Google Scholar 

  20. [20]

    Zhang MH, Wang K, Du YJ, et al. High and temperature-insensitive piezoelectric strain in alkali niobate lead-free perovskite. J Am Chem Soc 2017, 139: 3889–3895.

    CAS  Article  Google Scholar 

  21. [21]

    Jiang QY, Subbarao EC, Cross LE. Effect of composition and temperature on electric fatigue of La-doped lead zirconate titanate ceramics. J Appl Phys 1994, 75: 7433–7443.

    CAS  Article  Google Scholar 

  22. [22]

    Zhang SJ, Xia R, Hao H, et al. Mitigation of thermal and fatigue behavior in K0.5Na0.5NbO3-based lead free piezoceramics. Appl Phys Lett 2008, 92: 152904.

    Article  CAS  Google Scholar 

  23. [23]

    Wang K, Yao FZ, Jo W, et al. Temperature-insensitive (K, Na)NbO3-based lead-free piezoactuator ceramics. Adv Funct Mater 2013, 23: 4079–4086.

    CAS  Article  Google Scholar 

  24. [24]

    Yao FZ, Patterson EA, Wang K, et al. Enhanced bipolar fatigue resistance in CaZrO3-modified (K, Na)NbO3 lead-free piezoceramics. Appl Phys Left 2014, 104: 242912.

    Article  CAS  Google Scholar 

  25. [25]

    Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst Sect A 1976, 32: 751–767.

    Article  Google Scholar 

  26. [26]

    Tao H, Wu JG, Xiao DQ, et al. High strain in (K,Na)NbO3 -based lead-free piezoceramics. ACS Appl Mater Interfaces 2014, 6: 20358–20364.

    CAS  Article  Google Scholar 

  27. [27]

    Yang WW, Li P, Wu SH, et al. Coexistence of excellent piezoelectric performance and thermal stability in KNN-based lead-free piezoelectric ceramics. Ceram Int 2020, 46: 1390–1395.

    CAS  Article  Google Scholar 

  28. [28]

    Lv X, Li ZY, Wu JG, et al. Enhanced piezoelectric properties in potassium-sodium niobate-based ternary ceramics. Mater Des 2016, 109: 609–614.

    CAS  Article  Google Scholar 

  29. [29]

    Tao H, Wu JG, Zheng T, et al. New (1-x)K0.45Na0.55Nb0.96 Sb0.04O3-xBi0.5Na0.5HfO3 lead-free ceramics: Phase boundary and their electrical properties. J Appl Phys 2015, 118: 044102.

    Article  CAS  Google Scholar 

  30. [30]

    Tao H, Wu JG. Giant piezoelectric effect and high strain response in (1-x)(K0.45Na0.55)(NbiSb)O3-xBi0.5Na0.5Zr1-HfO3 lead-free ceramics. J Eur Ceram Soc 2016, 36: 1605–1612.

    CAS  Article  Google Scholar 

  31. [31]

    Cui B, Werner P, Ma TP, et al. Direct imaging of structural changes induced by ionic liquid gating leading to engineered three-dimensional meso-structures. Nat Commun 2018, 9: 3055.

    Article  CAS  Google Scholar 

  32. [32]

    Wang XZ, Huan Y, Wang ZX, et al. Electrical conduction and dielectric relaxation mechanisms in the KNN-based ceramics. J Appl Phys 2019, 126: 104101.

    Article  CAS  Google Scholar 

  33. [33]

    Nobre MAL, Lanfredi S. Ferroelectric state analysis in grain boundary of Na0.85Li0.15NbO3 ceramic. J Appl Phys 2003, 93: 5557–5562.

    CAS  Article  Google Scholar 

  34. [34]

    Yoon SH, Randall CA, Hur KH. Effect of acceptor (Mg) concentration on the resistance degradation behavior in acceptor (Mg)-doped BaTiO3Bulk ceramics: I. impedance analysis. J Am Ceram Soc 2009, 92: 1758–1765.

    CAS  Article  Google Scholar 

  35. [35]

    Irvine JTS, Sinclair DC, West AR. Electroceramics: characterization by impedance spectroscopy. Adv Mater 1990, 2: 132–138.

    CAS  Article  Google Scholar 

  36. [36]

    Huan Y, Wang XH, Wei T, et al. Defect control for enhanced piezoelectric properties in SnO2 and ZrO2 co-modified KNN ceramics fired under reducing atmosphere. J Eur Ceram Soc 2017, 37: 2057–2065.

    CAS  Article  Google Scholar 

  37. [37]

    Huan Y, Wang XH, Wei T, et al. Defect engineering of high-performance potassium sodium niobate piezoelectric ceramics sintered in reducing atmosphere. J Am Ceram Soc 2017, 100: 2024–2033.

    CAS  Article  Google Scholar 

  38. [38]

    Molak A, Ksepko E, Gruszka I, et al. Electric permittivity and conductivity of (Na0.5Pb0.5)(Mn0.5Nb0.5)O3 ceramics. Solid State Ionics 2005, 176: 1439–1447.

    CAS  Article  Google Scholar 

  39. [39]

    Rafiq MA, Tkach A, Costa ME, et al. Defects and charge transport in Mn-doped K0.5Na0.5NbO3 ceramics. Phys Chem ChemPhys 2015, 17: 24403–24411.

    CAS  Article  Google Scholar 

  40. [40]

    Lv X, Wu JG, Xiao DQ, et al. Electric field-induced phase transitions and composition-driven nanodomains in rhombohedral-tetragonal potassium-sodium niobate-based ceramics. Acta Mater 2017, 140: 79–86.

    CAS  Article  Google Scholar 

  41. [41]

    Huan Y, Wang XH, Li LT. Displacement of Ta-O bonds near polymorphic phase transition in Li-, Ta-, and Sb-modified (K,Na)NbO3 ceramics. Appl Phys Lett 2014, 104: 242905.

    Article  CAS  Google Scholar 

  42. [42]

    Huan Y, Wei T, Wang ZX, et al. Polarization switching and rotation in KNN-based lead-free piezoelectric ceramics near the polymorphic phase boundary. J Eur Ceram Soc 2019, 39: 1002–1010.

    CAS  Article  Google Scholar 

  43. [43]

    Wang K, Li JF. Domain engineering of lead-free Li-modified (K,Na)NbO3 polycrystals with highly enhanced piezoelectricity. Adv Funct Mater 2010, 20: 1924–1929.

    CAS  Article  Google Scholar 

  44. [44]

    Zhang MH, Wang K, Zhou JS, et al. Thermally stable piezoelectric properties of (K,Na)NbO3-based lead-free perovskite with rhombohedral-tetragonal coexisting phase. Acta Mater 2017, 122: 344–351.

    CAS  Article  Google Scholar 

  45. [45]

    Zhen YC, Cen ZY, Chen LL, et al. The effect of micro structure on piezoelectric properties and temperature stability for MnO doped KNN-based ceramics sintered in different atmospheres. J Alloys Compd 2018, 752: 206–212.

    CAS  Article  Google Scholar 

  46. [46]

    Kim JH, Kim DH, Lee TH, et al. Large electrostrain in K(Nb1-xMnx)O3 lead-free piezoelectric ceramics. J Am Ceram Soc 2016, 99: 4031–4038.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The study was supported by National Natural Science Foundation of China (Grant Nos. 51702119, 51702122, and 51972146).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yu Huan or Tao Wei.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecomm-ons.org/licenses/by/4.0/

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Wang, Z., Huan, Y. et al. Enhanced thermal and cycling reliabilities in (K,Na)(Nb,Sb)O3-CaZrO3-(Bi,Na)HfO3 ceramics. J Adv Ceram 9, 349–359 (2020). https://doi.org/10.1007/s40145-020-0374-9

Download citation

Keywords

  • (Na,K)NbO3 (KNN)-based ceramics
  • thermal stability
  • fatigue resistance
  • crystal structure
  • defect structure