Journal of Advanced Ceramics

, Volume 7, Issue 2, pp 160–168 | Cite as

Synthesis, sintering, and thermoelectric properties of the solid solution La1–xSr x CoOδ (0 ≤ x ≤ 1)

  • M. A. Bousnina
  • R. Dujardin
  • L. Perriere
  • F. Giovannelli
  • G. Guegan
  • F. Delorme
Open Access
Research Article


In this work, we synthesized cubic perovskite ceramics of the whole La1–xSr x CoO3 (0 ≤ x ≤ 1) solid solution for the first time. Synthesis was carried out by solid state reaction and conventional sintering to reach dense ceramics. For x > 0.8, it was necessary to substitute 3% cobalt by silicon to stabilize the cubic perovskite structure. Electrical conductivity increased with Sr content to reach 3×105 S∙m–1 at 330 K for x = 0.3. However, the optimum electrical properties have been found for x = 0.05 at 330 K with PFmax = 3.11×10–4 W∙m–1∙K–2. Indeed, the Seebeck coefficient was decreasing when x increased to reach values close to 0 for x ≥ 0.3. Thermal conductivity was low at low temperature (≈ 2.5 W∙m–1∙K–1) and increased up to 6.5 W∙m–1∙K–1 when temperature increased. As the highest power factor was reached at low temperature as well as the lowest thermal conductivity, La1–xSr x CoO3 compounds with low x values appeared as very promising thermoelectric materials around room temperature, on the contrary to layered cobalt oxides. For high x values, Seebeck coefficient values close to zero made these materials unsuitable for thermoelectric applications.


perovskite cobalt oxide solid solution electrical conductivity thermoelectric 



The authors acknowledge ADEME (Agence de l’Environnement et de la Maîtrise de l’Energie) and Plan d’Investissment d’Avenir PIA “Tours 2015” for the financial support.


  1. [1]
    Terasaki I, Sasago Y, Uchinokura K. Large thermoelectric power in NaCo2O4 single crystals. Phys Rev B 1997, 56: R12685.CrossRefGoogle Scholar
  2. [2]
    Li S, Funahashi R, Matsubara I, et al. High temperature thermoelectric properties of oxide Ca9Co12O28. J Mater Chem 1999, 9: 1659–1660.CrossRefGoogle Scholar
  3. [3]
    Masset AC, Michel C, Maignan A, et al. Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9. Phys Rev B 2000, 62: 166.CrossRefGoogle Scholar
  4. [4]
    Delorme F, Fernandez Martin C, Marudhachalam P, et al. Effect of Ca substitution by Sr on the thermoelectric properties of Ca3Co4O9 ceramics. J Alloys Compd 2011, 509: 2311–2315.CrossRefGoogle Scholar
  5. [5]
    Delorme F, Ovono Ovono D, Marudhachalam P, et al. Effect of precursors size on the thermoelectric properties of Ca3Co4O9 ceramics. Mater Res Bull 2012, 47: 1169–1175.CrossRefGoogle Scholar
  6. [6]
    Diez JC, Torres MA, Rasekh Sh, et al. Enhancement of Ca3Co4O9 thermoelectric properties by Cr for Co substitution. Ceram Int 2013, 39: 6051–6056.CrossRefGoogle Scholar
  7. [7]
    Chen C, Zhang T, Donelson R, et al. Thermopower and chemical stability of Na0.77CoO2/Ca3Co4O9 composites. Acta Mater 2014, 63: 99–106.CrossRefGoogle Scholar
  8. [8]
    Delorme F, Diaz-Chao P, Guilmeau E, et al. Thermoelectric properties of Ca3Co4O9–Co3O4 composites. Ceram Int 2015, 41: 10038–10043.CrossRefGoogle Scholar
  9. [9]
    Funahashi R, Shikano M. Bi2Sr2Co2Oy whiskers with high thermoelectric figure of merit. Appl Phys Lett 2002, 81: 1459–1461.CrossRefGoogle Scholar
  10. [10]
    Yamauchi H, Sakai K, Nagai T, et al. Parent of misfit-layered cobalt oxides: [Sr2O2]qCoO2. Chem Mater 2006, 18: 155–158.CrossRefGoogle Scholar
  11. [11]
    Delorme F, Chen C, Pignon B, et al. Promising high temperature thermoelectric properties of dense Ba2Co9O14 ceramics. J Eur Ceram Soc 2017, 37: 2615–2620.CrossRefGoogle Scholar
  12. [12]
    Ohtaki M, Araki K, Yamamoto K. High thermoelectric performance of dually doped ZnO ceramics. J Electron Mater 2009, 38: 1234–1238.CrossRefGoogle Scholar
  13. [13]
    Díaz-Chao P, Giovannelli F, Lebedev O, et al. Textured Al-doped ZnO ceramics with isotropic grains. J Eur Ceram Soc 2014, 34: 4247–4256.CrossRefGoogle Scholar
  14. [14]
    Bérardan D, Guilmeau E, Maignan A, et al. In2O3:Ge, a promising n-type thermoelectric oxide composite. Solid State Commun 2008, 146: 97–101.CrossRefGoogle Scholar
  15. [15]
    Guilmeau E, Bérardan D, Simon Ch, et al. Tuning the transport and thermoelectric properties of In2O3 bulk ceramics through doping at in-site. J Appl Phys 2009, 106: 053715.CrossRefGoogle Scholar
  16. [16]
    Flahaut D, Mihara T, Funahashi R, et al. Thermoelectrical properties of A-site substituted Ca1-xRexMnO3 system. J Appl Phys 2006, 100: 084911.CrossRefGoogle Scholar
  17. [17]
    Muta H, Kurosaki K, Yamanaka S. Thermoelectric properties of rare earth doped SrTiO3. J Alloys Compd 2003, 350: 292–295.CrossRefGoogle Scholar
  18. [18]
    Delorme F, Bah M, Schoenstein F, et al. Thermoelectric properties of oxygen deficient (K0.5Na0.5)NbO3 ceramics. Mater Lett 2016, 162: 24–27.CrossRefGoogle Scholar
  19. [19]
    Azough F, Freer R, Yeandel SR, et al. Ba6-3xNd8+2xTi18O54 tungsten bronze: A new high-temperature n-type oxide thermoelectric. J Electron Mater 2016, 45: 1894–1899.CrossRefGoogle Scholar
  20. [20]
    Androulakis J, Migiakis P, Giapintzakis J. La0.95Sr0.05CoO3: An efficient room-temperature thermoelectric oxide. Appl Phys Lett 2004, 84: 1099–1101.CrossRefGoogle Scholar
  21. [21]
    Wang Y, Sui Y, Ren P, et al. Correlation between the structural distortions and thermoelectric characteristics in La1-xAxCoO3 (A = Ca and Sr). Inorg Chem 2010, 49: 3216–3223.CrossRefGoogle Scholar
  22. [22]
    Wang Y, Fan HJ. Improved thermoelectric properties of La1-xSrxCoO3 nanowires. J Phys Chem C 2010, 114: 13947–13953.CrossRefGoogle Scholar
  23. [23]
    Li F, Li J-F. Effect of Ni substitution on electrical and thermoelectric properties of LaCoO3 ceramics. Ceram Int 2011, 37: 105–110.CrossRefGoogle Scholar
  24. [24]
    Kharton VV, Figueiredo FM, Kovalevsky AV, et al. Processing, microstructure and properties of LaCo3-δ ceramics. J Eur Ceram Soc 2001, 21: 2301–2309.CrossRefGoogle Scholar
  25. [25]
    Deac IG, Vladescu A, Balasz I, et al. Low temperature magnetic properties of Pr0.7(Ca,Sr)0.3CoO3 oxides. Acta Phys Pol A 2011, 120: 306–310.CrossRefGoogle Scholar
  26. [26]
    Li F, Li J-F. Enhanced thermoelectric performance of separately Ni-doped and Ni/Sr-codoped LaCoO3 nanocomposites. J Am Ceram Soc 2012, 95: 3562–3568.CrossRefGoogle Scholar
  27. [27]
    Masuda H, Fujita T, Miyashita T, et al. Transport and magnetic properties of R1–xAxCoO3 (R = La, Pr and Nd; A = Ba, Sr and Ca). J Phys Soc Jpn 2003, 72: 873–878.CrossRefGoogle Scholar
  28. [28]
    Muta K, Kobayashi Y, Asai K. Magnetic, electronic transport, and calorimetric investigations of La1–xCaxCoO3 in comparison with La1–xSrxCoO3. J Phys Soc Jpn 2002, 71: 2784–2791.CrossRefGoogle Scholar
  29. [29]
    Kun R, Populoh S, Karvonen L, et al. Structural and thermoelectric characterization of Ba substituted LaCoO3 perovskite-type materials obtained by polymerized gel combustion method. J Alloys Compd 2013, 579: 147–155.CrossRefGoogle Scholar
  30. [30]
    Kozuka H, Yamagiwa K, Ohbayashi K, et al. Origin of high electrical conductivity in alkaline-earth doped LaCoO3. J Mater Chem 2012, 22: 11003–11005.CrossRefGoogle Scholar
  31. [31]
    Sánchez-Andújar M, Rinaldi D, Caciuffo R, et al. Magnetotransport properties of spin-glass-like layered compounds La1-xSr1+xCoO4. Solid State Sci 2006, 8: 901–907.CrossRefGoogle Scholar
  32. [32]
    Raccah PM, Goodenough JB. A localized-electron to collective-electron transition in the system (La,Sr)CoO3. J Appl Phys 1968, 39: 1209.CrossRefGoogle Scholar
  33. [33]
    Señarís-Rodríguez MA, Goodenough JB. Magnetic and transport properties of the system La1–xSrxCoO3–δ (0 < x = 0.50). J Solid State Chem 1995, 118: 323–336.CrossRefGoogle Scholar
  34. [34]
    Itoh M, Natori I, Kubota S, et al. Spin-glass behavior and magnetic phase diagram of La1–xSrxCoO3 (0 ≤ x ≤ 0.5) studied by magnetization measurements. J Phys Soc Jpn 1994, 63: 1486–1493.CrossRefGoogle Scholar
  35. [35]
    Caciuffo R, Rinaldi D, Barucca G, et al. Structural details and magnetic order of La1–xSrxCoO3 (x < ~0.3). Phys Rev B 1999, 59: 1068.CrossRefGoogle Scholar
  36. [36]
    Zhang X, Li XM, Chen TL, et al. Thermoelectric and transport properties of La0.95Sr0.05CoO3. J Cryst Growth 2006, 286: 1–5.CrossRefGoogle Scholar
  37. [37]
    Kozuka H, Yamada H, Hishida T, et al. Electronic transport properties of the perovskite-type oxides La1–xSrxCoO3±d. J Mater Chem 2012, 22: 20217–20222.CrossRefGoogle Scholar
  38. [38]
    Papageorgiou C, Athanasopoulos GI, Kyratsi Th, et al. Influence of processing conditions on the thermoelectric properties of La1–xSrxCoO3 (x = 0, 0.05). AIP Conf Proc 2012, 1449: 323.CrossRefGoogle Scholar
  39. [39]
    Singh S, Pandey SK. Understanding the thermoelectric properties of LaCoO3 compound. Philos Mag 2017, 97: 451–463.CrossRefGoogle Scholar
  40. [40]
    Koshibae W, Tsutsui K, Maekawa S. Thermopower in cobalt oxides. Phys Rev B 2000, 62: 6869.CrossRefGoogle Scholar
  41. [41]
    Hancock CA, Slater PR. Synthesis of silicon doped SrMO3 (M = Mn, Co): Stabilization of the cubic perovskite and enhancement in conductivity. Dalton Trans 2011, 40: 5599–5603.CrossRefGoogle Scholar
  42. [42]
    Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys B: Condens Matter 1993, 192: 55–69.CrossRefGoogle Scholar
  43. [43]
    Nadalin RJ, Brozda WB. Chemical methods for the determination of the “oxidizing (or reducing) power” of certain materials containing a multivalent element in several oxidation states. Anal Chim Acta 1963, 28: 282–293.CrossRefGoogle Scholar
  44. [44]
    Stevenson JW, Armstrong TR, Carneim RD, et al. Electrochemical properties of mixed conducting perovskites La1–xMxCo1–yFeyO3–δ (M = Sr, Ba, Ca). J Electrochem Soc 1996, 143: 2722–2729.CrossRefGoogle Scholar
  45. [45]
    Closset NMLNP, van Doorn RHE, Kruidhof H, et al. About the crystal structure of La1-xSrxCo3-δ (0 ≤ x ≤ 0.6). Powder Diffr 1996, 11: 31–34.CrossRefGoogle Scholar
  46. [46]
    Bezdicka P, Wattiaux A, Grenier JC, et al. Preparation and characterization of fully stoichiometric SrCoO3 by electrochemical oxidation. Z Anorg Allg Chem 1993, 619: 7–12.CrossRefGoogle Scholar
  47. [47]
    Itoh T, Inukai M, Kitamura N, et al. Correlation between structure and mixed ionic–electronic conduction mechanism for (La1–xSrx)CoO3–δ using synchrotron X-ray analysis and first principles calculations. J Mater Chem A 2015, 3: 6943–6953.CrossRefGoogle Scholar
  48. [48]
    Jiamprasertboon A, Okamoto Y, Hiroi Z, et al. Thermoelectric properties of Sr and Mg double-substituted LaCoO3 at room temperature. Ceram Int 2014, 40: 12729–12735.CrossRefGoogle Scholar
  49. [49]
    Mineshige A, Inaba M, Yao T, et al. Crystal structure and metal–insulator transition of La1-xSrxCoO3. J Solid State Chem 1996, 121: 423–429.CrossRefGoogle Scholar
  50. [50]
    Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst 1976, A32: 751–767.CrossRefGoogle Scholar
  51. [51]
    Maignan A, Hébert S, Pi L, et al. Perovskite manganites and layered cobaltites: Potential materials for thermoelectric applications. Cryst Eng 2002, 5: 365–382.CrossRefGoogle Scholar
  52. [52]
    Li F, Li J-F, Li J-H, et al. The effect of Cu substitution on microstructure and thermoelectric properties of LaCoO3 ceramics. Phys Chem Chem Phys 2012, 14: 12213–12220.CrossRefGoogle Scholar
  53. [53]
    Bhatt HD, Vedula R, Desu SB, et al. La1–xSrxCoO3 for thin film thermocouple applications. Thin Solid Films 1999, 350: 249–257.CrossRefGoogle Scholar
  54. [54]
    Iwasaki K, Ito T, Nagasaki T, et al. Thermoelectric properties of polycrystalline La1-xSrxCoO3. J Solid State Chem 2008, 181: 3145–3150.CrossRefGoogle Scholar
  55. [55]
    Orikasa Y, Ina T, Nakao T, et al. X-ray absorption spectroscopic study on La0.6Sr0.4Co3-δ cathode materials related with oxygen vacancy formation. J Phys Chem C 2011, 115: 16433–16438.CrossRefGoogle Scholar
  56. [56]
    Koumoto K, Funahashi R, Guilmeau E, et al. Thermoelectric ceramics for energy harvesting. J Am Ceram Soc 2013, 96: 1–23.CrossRefGoogle Scholar
  57. [57]
    Zhou AJ, Zhu TJ, Zhao XB, et al. Fabrication and thermoelectric properties of perovskite-type oxide La1-xSrxCoO3 (x = 0, 0.1). J Alloys Compd 2008, 449: 105–108.CrossRefGoogle Scholar
  58. [58]
    Viskadourakis Z, Athanasopoulos GI, Kasotakis E, et al. Effect of microstructure on the thermoelectric performance of La1-xSrxCoO3. J Solid State Chem 2016, 243: 111–118.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • M. A. Bousnina
    • 1
  • R. Dujardin
    • 1
  • L. Perriere
    • 2
  • F. Giovannelli
    • 1
  • G. Guegan
    • 3
  • F. Delorme
    • 1
  1. 1.Université François Rabelais de Tours, CNRS, INSA CVL, GREMAN UMR7347, IUT de BloisBlois CedexFrance
  2. 2.ICMPEThiaisFrance
  3. 3.ST MicroelectronicsToursFrance

Personalised recommendations