Journal of Advanced Ceramics

, Volume 7, Issue 2, pp 109–116 | Cite as

Photoluminescence characteristics of soft PZT 53/47 ceramic doped at A and/or B sites

  • M. D. Durruthy-Rodríguez
  • J. J. Gervacio-Arciniega
  • M. Hernández-García
  • J. M. Yáñez-Limón
Open Access
Research Article
  • 77 Downloads

Abstract

This study presents the photoluminescence characteristics of the PZT 53/47 system doped at A and/or B sites, with Nb (PZTN), La (PLZT), and Nb–La (PLZTN) in the concentration range from 0.2 to 1.0 molar fraction. The intensity of the emission bands of the system PZTN is two orders higher than the intensity of the emission bands of the systems PLZT and PLZTN, and these emission bands are located at 1.73 eV (718 nm), 2.56 eV (485 nm), and 2.93 eV (424 nm). The origin of the luminescence in these systems is associated with lead and oxygen vacancies produced during the sintering process. The results from X-ray diffraction (XRD) show a mixture of rhombohedral and tetragonal phases. The system PZTN shows a higher tetragonal phase concentration, while PLZT and PLZTN systems show a higher rhombohedral phase concentration. The cell volume shows an increase with dopant concentration only in the case of the PLZTN system. The band gap energy shows a small variation in the PZTN and PLZTN cases around 3.0 eV, a close value to the band gap energy of the pure PZT 53/47 sample. The system PLZT shows an increasing behavior until 4.41 eV for the higher dopant concentration.

Keywords

photoluminescence PZT ceramics band structure X-ray diffraction (XRD) 

References

  1. [1]
    A-Paz de Araujo C, Cuchiaro JD, McMillan LD, et al. Fatigue-free ferroelectric capacitors with platinum electrodes. Nature 1995, 374: 627–629.CrossRefGoogle Scholar
  2. [2]
    Park BH, Kang BS, Bu SD, et al. Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature 1999, 401: 682–684.CrossRefGoogle Scholar
  3. [3]
    Chon U, Jang HM, Kim MG, et al. Layered perovskites with giant spontaneous polarizations for nonvolatile memories. Phys Rev Lett 2002, 89: 087601.CrossRefGoogle Scholar
  4. [4]
    Warusawithana MP, Cen C, Sleasman CR, et al. A ferroelectric oxide made directly on silicon. Science 2009, 324: 367–370.CrossRefGoogle Scholar
  5. [5]
    Silva MS, Cilense M, Orhan E, et al. The nature of the photoluminescence in amorphized PZT. J Lumin 2005, 111: 205–213.CrossRefGoogle Scholar
  6. [6]
    Longo E, de Figueiredo AT, Silva MS, et al. Influence of structural disorder on the photoluminescence emission of PZT powders. J Phys Chem A 2008, 112: 8953–8957.CrossRefGoogle Scholar
  7. [7]
    Sun CQ, Jin D, Zhou J, et al. Intense and stable blue-light emission of Pb(ZrxTi1-x)O3. Appl Phys Lett 2001, 79: 1082–1084.CrossRefGoogle Scholar
  8. [8]
    Bao D. Photoluminescence in low-dimensional oxide ferroelectric materials. In: Ferroelectrics. Coondoo I, Ed. InTech, 2010: 43–62.Google Scholar
  9. [9]
    Durruthy-Rodríguez MD, Costa-Marrero J, Hernández-García M, et al. Photoluminescence in “hard” and “soft” ferroelectric ceramics. Appl Phys A 2010, 98: 543–550.CrossRefGoogle Scholar
  10. [10]
    Durruthy-Rodríguez MD, Costa-Marrero J, Hernández-Garcia M, et al. Optical characterization in Pb(Zr1-xTix)1-yNbyO3 ferroelectric ceramic system. Appl Phys A 2011, 103: 467–476.CrossRefGoogle Scholar
  11. [11]
    Kottim G. Reflectance Spectroscopy. New York: Springer Verlag, 1969.Google Scholar
  12. [12]
    Baedi J, Hosseini SM, Kompany A. The effect of excess titanium and crystal symmetry on electronic properties of Pb(Zr1-xTix)O3 compounds. Comput Mater Sci 2008, 43: 909–916.CrossRefGoogle Scholar
  13. [13]
    López R, Gómez R. Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: A comparative study. J Sol-Gel Sci Technol 2012, 61: 1–7.CrossRefGoogle Scholar
  14. [14]
    Teixeira GF, Zaghete MA, Gasparotto G, et al. Photoluminiscence properties and synthesis of a PZT mesostructure obtained by the microwave-assisted hydrothermal method. J Alloys Compd 2012, 512: 124–127.CrossRefGoogle Scholar
  15. [15]
    Yu PY, Cardona M. Fundamentals of Semiconductors Physics and Materials Properties. Springer-Verlag Berlin Heidelberg, 2001: 268–280.Google Scholar
  16. [16]
    Noheda B, Cox DE, Shirane G, et al. Stability of the monoclinic phase in the ferroelectric perovskite PbZr1-xTixO3. Phys Rev B 2000, 63: 014103.CrossRefGoogle Scholar
  17. [17]
    Jaffe B, Roth RS, Marzullo S. Piezoelectric properties of lead zirconate–lead titanate solid-solution ceramics. J Appl Phys 1954, 25: 809–810.CrossRefGoogle Scholar
  18. [18]
    Noheda B, Gonzalo JA, Cross LE, et al. Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: The structure of PbZr0.52Ti0.48O3. Phys Rev B 2000, 61: 8687–8695.CrossRefGoogle Scholar
  19. [19]
    Liu Y, Xu C-N, Nonaka K, et al. Photoluminescence and triboluminescence of PZT materials at room temperature. Ferroelectrics 2001, 264: 331–336.CrossRefGoogle Scholar
  20. [20]
    Baedi J, Benam MR, Majidiyan M. First-principles study of the effect of La substitution on the electronic and optical properties of Pb(ZrxTi1-x)O3 crystal. Phys Scr 2010, 81: 035701.CrossRefGoogle Scholar
  21. [21]
    Santos IA, Endo C, Zanin AL, et al. Hot-pressed transparent PLZT ceramics from low cost chemical processing. Mat Res 2001, 4: 291–295.CrossRefGoogle Scholar
  22. [22]
    Stashans A, Maldonado F. A quantum mechanical study of La-doped Pb(Zr,Ti)O3. Physica B 2007, 392: 237–241.CrossRefGoogle Scholar
  23. [23]
    Anicete-Santos M, Silva MS, Orhan E, et al. Contribution of structural order-disorder to the room-temperature photoluminescence of lead zirconate titanate powders. J Lumin 2007, 127: 689–695.CrossRefGoogle Scholar
  24. [24]
    Eyraud L, Guiffard B, Lebrun L, et al. Interpretation of the softening effect in PZT ceramics near the morphotropic phase boundary. Ferroelectrics 2006, 330: 51–60.CrossRefGoogle Scholar
  25. [25]
    Eyraud L, Eyraud P, Lebrun L, et al. Effect of (Mn, F) co-doping on PZT characteristics under the influence of external disturbances. Ferroelectrics 2002, 265: 303–316.CrossRefGoogle Scholar
  26. [26]
    Dixit A, Majumder SB, Katiyar RS, et al. Studies on the relaxor behavior of sol-gel derived Ba(ZrxTi1-x)O3 (0.30 ≤ x ≤ 0.70) thin films. J Mater Sci 2006, 41: 87–96.CrossRefGoogle Scholar
  27. [27]
    Baedi J, Hosseini SM, Kompany A. The effect of excess titanium and crystal symmetry on electronic properties of Pb(Zr1-xTix)O3 compounds. Comput Mater Sci 2008, 43: 909–916.CrossRefGoogle Scholar
  28. [28]
    Casabó i Gispert J. Atomic structure and chemical bond. Reverté SA, Ed. Barcelona: Ep-15.4.2-Lattice perovskite type, 344–345.Google Scholar

Copyright information

© The Author(s) 2018

Open Access The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • M. D. Durruthy-Rodríguez
    • 1
    • 2
  • J. J. Gervacio-Arciniega
    • 3
  • M. Hernández-García
    • 1
    • 2
  • J. M. Yáñez-Limón
    • 4
  1. 1.Universidad Nacional EvangélicaSan Carlos, Santo Domingo, Distrito NacionalRepública Dominicana
  2. 2.Departamento de Física Aplicada, Instituto de Cibernética, Matemática y FísicaCITMALa HabanaCuba
  3. 3.Catedrático CONACYT-Facultad de Ciencias Físico MatemáticasBenemérita Universidad Autónoma de PueblaPuebla, Pue.México
  4. 4.CINVESTAV-Unidad Querétaro del IPNSantiago de QuerétaroMéxico

Personalised recommendations