Advertisement

Journal of Advanced Ceramics

, Volume 7, Issue 2, pp 99–108 | Cite as

Enhanced time response and temperature sensing behavior of thermistor using Zn-doped CaTiO3 nanoparticles

  • Subhanarayan Sahoo
Open Access
Research Article
  • 430 Downloads

Abstract

In the present study, Zn-doped CaTiO3 nanocrystalline was synthesized to study the thermistor behavior with temperature. The X-ray powder diffraction analysis showed the formation of a single-phase orthorhombic structure at room temperature. The electrical resistance of the Zn-doped CaTiO3 increased with increasing doping concentration and decreased at higher measuring temperature, showing a negative temperature coefficient of resistance (NTCR) behavior. Different thermistor parameters were calculated using Steinhart–Hart equations, whilst time domain analysis confirmed faster response towards applied voltage.

Keywords

multiferroic X-ray diffraction (XRD) electrical properties conductivity impedance spectroscopy NTCR thermistor 

References

  1. [1]
    Buttner RH, Maslen EN. Electron difference density and structural parameters in CaTiO3. Acta Cryst 1992, B48: 644–649.CrossRefGoogle Scholar
  2. [2]
    Wang H, Cheng J, Zhai L, et al. Preparation of LixCa1-xTiO3 solid electrolytes by the sol–gel method. Solid State Commun 2007, 142: 710–712.CrossRefGoogle Scholar
  3. [3]
    Murashkina AA, Demina AN, Filonova EA, et al. Thermal expansion and electrical conductivity of CaTi0.9M0.1 3-δ (M = Fe, Cu, Al). Inorg Mater 2008, 44: 296–298.CrossRefGoogle Scholar
  4. [4]
    Dunyushkina LA, Demin AK, Zhuravlev BV. Electrical conductivity of iron-doped calcium titanate. Solid State Ionics 1999, 116: 85–88.CrossRefGoogle Scholar
  5. [5]
    Chen L, Fan H, Zhang M, et al. Phase structure, microstructure and piezoelectric properties of perovskite (K0.5Na0.5)0.95Li0.05NbO3–Bi0.5(K0.15Na0.85)0.5TiO3 lead-free ceramics. J Alloys Compd 2010, 492: 313–319.CrossRefGoogle Scholar
  6. [6]
    Gheorghies C, Boutinaud P, Loic M, et al. Results on nanosized CaTiO3:Pr3+ phosphor. J Optoelectron Adv M 2009, 11: 583–589.Google Scholar
  7. [7]
    Ahmed MA, Bishay ST. Effect of annealing time, weight pressure and Fe doping on the electrical and magnetic behavior of calcium titanate. Mater Chem Phys 2009, 114: 446–450.CrossRefGoogle Scholar
  8. [8]
    Parinitha M, Venkateshulu A. Synthesis, characterization and transport property of PANI–calcium titanate composites. International Journal of Latest Research in Science and Technology 2013, 2: 495–498.Google Scholar
  9. [9]
    Suvorov D, Valant M, Jancar B, et al. CaTiO3-based ceramics: Microstructural development and dielectric properties. Acta Chem Slov 2001, 48: 87–99.Google Scholar
  10. [10]
    Li R, Yamaguchi Y, Tang Q, et al. Liquid phase sintering of Ca0.9Sr0.1TiO3 dielectric ceramics. J Ceram Soc Jpn 2004, 112: S309–S312.Google Scholar
  11. [11]
    Murugan M, Kakate VK, Bapat MS. Synthesis, characterization and evaluation of reflectivity of nanosized CaTiO3/epoxy resin composites in microwave bands. Bull Mater Sci 2011, 34: 699–704.CrossRefGoogle Scholar
  12. [12]
    Taibi-Benziada L, Mezroua A, von der Mühll. CaTiO3 related materials for resonators. Ceram-Silikaty 2004, 48: 180–184.Google Scholar
  13. [13]
    Yuan Y, Zhang S, Zhou X, et al. Low-temperature sintering and microwave dielectric properties of (Zn0.65Mg0.35)TiO3–CaTiO3 ceramics with H3BO3 addition. Ceram-Silikaty 2009, 53: 5–8.Google Scholar
  14. [14]
    Marques VS, Cavalcante LS, Sczancoski JC, et al. Synthesis of (Ca,Nd)TiO3 powders by complex polymerization, Rietveld refinement and optical properties. Spectrochim Acta A 2009, 74: 1050–1059.CrossRefGoogle Scholar
  15. [15]
    Shah MR, Akther Hossain AKM. Structural, dielectric and complex impedance spectroscopy studies of lead free Ca0.5+xNd0.5-x(Ti0.5Fe0.5)O3. J Mater Sci Technol 2013, 29: 323–329.CrossRefGoogle Scholar
  16. [16]
    Yuan X, Shi X, Shen M, et al. Luminescent properties of Pr3+ doped (Ca, Zn)TiO3: Powders and films. J Alloys Compd 2009, 485: 831–836.CrossRefGoogle Scholar
  17. [17]
    Chang R-C, Chu S-Y, Lin Y-F, et al. The effects of sintering temperature on the properties of (Na0.5K0.5)NbO3–CaTiO3 based lead-free ceramics. Sensor Actuat A: Phys 2007, 138: 355–360.CrossRefGoogle Scholar
  18. [18]
    Chewasatn S, Milne SJ, Pankurddee N, et al. Sol–gel synthesis of crack-free thin films of calcium lead titanate. In Proceedings of the 10th IEEE International Symposium on Applications of Ferroelectrics, 1996, 2: 597–600.CrossRefGoogle Scholar
  19. [19]
    Parashar SKS, Choudhary RNP, Murty BS. Ferroelectric phase transition in Pb0.92Gd0.08(Zr0.53Ti0.47)0.98O3 nanoceramic synthesized by high-energy ball milling. J Appl Phys 2003, 94: 6091–6096.CrossRefGoogle Scholar
  20. [20]
    Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci 2001, 46: 1–184.CrossRefGoogle Scholar
  21. [21]
    Abreu Jr. A, Zanetti SM, Oliveira MAS, et al. Effect of urea on lead zirconate titanate–Pb(Zr0.52Ti0.48)O3–nanopowders synthesized by the Pechini method. J Eur Ceram Soc 2005, 25: 743–748.CrossRefGoogle Scholar
  22. [22]
    Koch CC, Suryanarayana C. Nanocrystalline materials. In Microstructure and Properties of Materials. Li JCM, Ed. Singapore: World Scientific Publishing Corp., 2000, 2: 359–403.CrossRefGoogle Scholar
  23. [23]
    Suryanarayana C. Mechanical alloying. In ASM Handbook, Vol. 7, Powder Metal Technologies and Applications. ASM International, Materials Park, 1998: 80–90.Google Scholar
  24. [24]
    Suryanarayana C, Koch CC. Nanostructured materials. In Non-Equilibrium Processing of Materials. Suryanarayana C, Ed. Oxford, UK: Elsevier Science Pub., 1999: 313–346.CrossRefGoogle Scholar
  25. [25]
    Ma E, Atzmon M. Phase transformations induced by mechanical alloying in binary systems. Mater Chem Phys 1995, 39: 249–267.CrossRefGoogle Scholar
  26. [26]
    Morrell S, Man YT. Using modelling and simulation for the design of full scale ball mill circuits. Miner Eng 1997, 10: 1311–1327.CrossRefGoogle Scholar
  27. [27]
    Misra A, Cheung J. Particle motion and energy distribution in tumbling ball mills. Powder Technol 1999, 105: 222–227.CrossRefGoogle Scholar
  28. [28]
    Sahoo S, Dash U, Parashar SKS, et al. Frequency and temperature dependent electrical characteristics of CaTiO3 nano-ceramic prepared by high-energy ball milling. J Adv Ceram 2013, 2: 291–300.CrossRefGoogle Scholar
  29. [29]
    Brunets I, Mrooz O, Shpotyuk O, et al. Thick-film NTC thermistors based on spinel-type semiconducting electroceramics. In Proceedings of the 24th International Conference on Microelectronics, 2004, 2: 503–506.Google Scholar
  30. [30]
    Gouda GM, Nagendra CL. A new transition metal oxide sensor material for thermistor applications: Manganese-vanadium-oxide. In Proceedings of the 1st International Symposium on Physics and Technology of Sensors, 2012: 125–128.Google Scholar
  31. [31]
    McMurtry CH, Terrell WT, Benecki WT. A tin oxide thermistor for temperature sensing to 1800 °F. IEEE Trans Ind Gen A 1966, 2: 461–464.CrossRefGoogle Scholar
  32. [32]
    Yuan CL, Liu XY, Xu JW, et al. Electrical properties of SrxBa1-xFe0.6Sn0.4O3-ε NTC thermistor. Bull Mater Sci 2012, 35: 425–431.CrossRefGoogle Scholar
  33. [33]
    Park K, Bang DY, Kim JG, et al. Influence of the composition and the sintering temperature on the electrical resistivities of Ni–Mn–Co–(Fe) oxide NTC thermistors. Journal of the Korean Physical Society 2002, 41: 251–256.Google Scholar
  34. [34]
    De Vasconcelos EA, Khan SA, Zhang WY, et al. Highly sensitive thermistors based on high-purity polycrystalline cubic silicon carbide. Sensor Actuat A: Phys 2000, 83: 167–171.CrossRefGoogle Scholar
  35. [35]
    Yuan C, Liu X, Liang M, et al. Electrical properties of Sr–Bi–Mn–Fe–O thick-film NTC thermistors prepared by screen printing. Sensor Actuat A: Phys 2011, 167: 291–296.CrossRefGoogle Scholar
  36. [36]
    Nenova ZP, Nenova TG. Linearization circuit of the thermistor connection. IEEE T Instrum Meas 2009, 58: 441–449.CrossRefGoogle Scholar
  37. [37]
    Jadhav RN, Mathad SN, Puri V, et al. Studies on the properties of Ni0.6Cu0.4Mn2O4 NTC ceramic due to Fe doping. Ceram Int 2012, 38: 5181–5188.CrossRefGoogle Scholar
  38. [38]
    Sahoo S, Parashar SKS, Ali SM. CaTiO3 nano ceramic for NTCR thermistor based sensor application. J Adv Ceram 2014, 3: 117–124.CrossRefGoogle Scholar
  39. [39]
    Gouda GM, Nagendra CL. Structural and electrical properties of mixed oxides of manganese and vanadium: A new semiconductor oxide thermistor material. Sensor Actuat A: Phys 2009, 155: 263–271.CrossRefGoogle Scholar
  40. [40]
    Roy TK, Sanyal D, Bhowmick D, et al. Temperature dependent resistivity study on zinc oxide and the role of defects. Mat Sci Semicon Proc 2013, 16: 332–336.CrossRefGoogle Scholar
  41. [41]
    Sagar R, Madolappa S, Sharanappa N, et al. Synthesis, structure and electrical studies of praseodymium doped barium zirconium titanate. Mater Chem Phys 2013, 140: 119–125.CrossRefGoogle Scholar
  42. [42]
    Tsao K-Y, Tsai C-S, Huang C-Y. Effect of argon plasma treatment on the PTC and NTC behaviors of HDPE/carbon black/aluminum hydroxide nanocomposites for over-voltage resistance positive temperature coefficient (PTC). Surf Coat Technol 2010, 205: S279–S285.CrossRefGoogle Scholar
  43. [43]
    Zhang H, Chang A, Guan F, et al. The optimal synthesis condition by sol–gel method and electrical properties of Mn1.5-xCo1.5NixO4 ceramics. Ceram Int 2014, 40: 7865–7872.CrossRefGoogle Scholar
  44. [44]
    Xiong X, Xu J, Zhao P, et al. Structural and electrical properties of thick film thermistors based on perovskite La–Mn–Al–O. Ceram Int 2014, 40: 10505–10510.CrossRefGoogle Scholar
  45. [45]
    Zhang B, Zhao Q, Chang A, et al. New negative temperature coefficient thermistor ceramics in Mn-doped CaCu3-xMnxTi4O12 (0 ≤ x ≤ 1) system. Ceram Int 2014, 40: 11221–11227.CrossRefGoogle Scholar
  46. [46]
    Gao YQ, Huang ZM, Hou Y, et al. Structural and electrical properties of Mn1. 56Co0. 96Ni0. 48O4 NTC thermistor films. Mat Sci Eng B 2014, 185: 74–78.CrossRefGoogle Scholar
  47. [47]
    Xia J, Zhao Q, Gao B, et al. Preparation and electrical properties of Mn1.05-yCo1.95-x-z-wNixMgyAlzFewO4 NTC ceramic derived from microemulsion method. J Alloys Compd 2014, 591: 207–212.CrossRefGoogle Scholar
  48. [48]
    Kong W, Chen L, Gao B, et al. Fabrication and properties of Mn1.56Co0.96Ni0.48O4 free-standing ultrathin chips. Ceram Int 2014, 40: 8405–8409.CrossRefGoogle Scholar
  49. [49]
    Luo Y, Li X, Liu X, et al. Study of microstructure and electrical properties of BaNbxFexTi1-2xO3 (0 < x ≤ 0.1) negative temperature coefficient materials. Mater Lett 2013, 93: 187–189.CrossRefGoogle Scholar
  50. [50]
    Aleksic OS, Nikolic MV, Lukovic MD, et al. Preparation and characterization of Cu and Zn modified nickel manganite NTC powders and thick film thermistors. Mat Sci Eng B 2013, 178: 202–210.CrossRefGoogle Scholar
  51. [51]
    Gouda GM, Nagendra CL. Preparation and characterization of thin film thermistors of metal oxides of manganese and vanadium (Mn–V–O). Sensor Actuat A: Phys 2013, 190: 181–190.CrossRefGoogle Scholar
  52. [52]
    Zhang B, Zhao Q, Chang A, et al. La23-δoped 0.6Y2O3–0.4YCr0.5Mn0.5O3 composite NTC ceramics for wide range of temperature sensing. J Alloys Compd 2013, 581: 573–578.CrossRefGoogle Scholar
  53. [53]
    Aleksic OS, Nikolic MV, Lukovic MD, et al. Analysis and optimization of a thermal sensor system for measuring water flow. Sensor Actuat A: Phys 2013, 201: 371–376.CrossRefGoogle Scholar
  54. [54]
    Jagtap S, Rane S, Gosavi S, et al. Infrared properties of ‘lead free’ thick film NTC thermo-resistive sensor based on the mixture of spinel material and RuO2. Sensor Actuat A: Phys 2013, 197: 166–170.CrossRefGoogle Scholar
  55. [55]
    Muralidharan MN, Rohini PR, Sunny EK, et al. Effect of Cu and Fe addition on electrical properties of Ni–Mn–Co–O NTC thermistor compositions. Ceram Int 2012, 38: 6481–6486.CrossRefGoogle Scholar
  56. [56]
    Jadhav RN, Mathad SN, Puri V. Studies on the properties of Ni0.6Cu0.4Mn2O4 NTC ceramic due to Fe doping. Ceram Int 2012, 38: 5181–5188.CrossRefGoogle Scholar
  57. [57]
    Kang J-E, Ryu J, Han G, et al. LaNiO3 conducting particle dispersed NiMn2O4 nanocomposite NTC thermistor thick films by aerosol deposition. J Alloys Compd 2012, 534: 70–73.CrossRefGoogle Scholar
  58. [58]
    Yuan CL, Liu XY, Zhou CR, et al. Electrical properties of lead-free thick film NTC thermistors based on perovskite-type BaCoII xCoIII 2xBi1-3xO3. Mater Lett 2011, 65: 836–839.CrossRefGoogle Scholar
  59. [59]
    Wang J, Zhang J. Structural and electrical properties of NiMgxMn2-xO4 NTC thermistors prepared by using sol–gel derived powders. Mat Sci Eng B 2011, 176: 616–619.CrossRefGoogle Scholar
  60. [60]
    Liang S, Zhang X, Bai Y, et al. Study on the preparation and electrical properties of NTC thick film thermistor deposited by supersonic atmospheric plasma spraying. Appl Surf Sci 2011, 257: 9825–9829.CrossRefGoogle Scholar
  61. [61]
    Liang S, Yang J, Yi X, et al. An efficient way to improve the electrical stability of Ni0.6Si0.2Al0.6Mn1.6O4 NTC thermistor. Ceram Int 2011, 37: 2537–2541.CrossRefGoogle Scholar
  62. [62]
    Wang J, Zhang J. Structural and electrical properties of NiMgxMn2-xO4 NTC thermistors prepared by using sol–gel derived powders. Mat Sci Eng B 2011, 176: 616–619.CrossRefGoogle Scholar
  63. [63]
    Yuan C, Liu X, Liang M, et al. Electrical properties of Sr–Bi–Mn–Fe–O thick-film NTC thermistors prepared by screen printing. Sensor Actuat A: Phys 2011, 167: 291–296.CrossRefGoogle Scholar
  64. [64]
    Zhao J, Li L, Gui Z. Influence of lithium modification on the properties of Y-doped Sr0.5Pb0.5TiO3 thermistors. Sensor Actuat A: Phys 2001, 95: 46–50.CrossRefGoogle Scholar
  65. [65]
    Jadhav RN, Mathad SN, Puri V. Studies on the properties of Ni0.6Cu0.4Mn2O4 NTC ceramic due to Fe doping. Ceram Int 2012, 38: 5181–5188.CrossRefGoogle Scholar
  66. [66]
    Luo Y, Li X, Liu X. Electrical properties of binder-free thick film BaYxBi1-xO3 NTC thermistors. J Alloys Compd 2011, 509: 463–465.CrossRefGoogle Scholar
  67. [67]
    Kamlo AN, Bernard J, Lelievre C, et al. Synthesis and NTC properties of YCr1-xMnxO3 ceramics sintered under nitrogen atmosphere. J Eur Ceram Soc 2011, 31: 1457–1463.CrossRefGoogle Scholar
  68. [68]
    Singla ML, Sharma S, Raj B, et al. Characterization of transition metal oxide ceramic material for continuous thermocouple and its use as NTC fire wire sensor. Sensor Actuat A: Phys 2005, 120: 337–342.CrossRefGoogle Scholar
  69. [69]
    Jin X, Chang A, Zhang H, et al. A comparison study of sinterability and electrical properties for microwave and conventional sintered Mn0.43Ni0.9CuFe0.67O4 ceramics. J Mater Sci Technol 2010, 26: 344–350.CrossRefGoogle Scholar
  70. [70]
    Yuan C, Wu X, Huang J, et al. Electrical properties of thick film NTC thermistors based on SrFe0.9Sn0.1O3-δ. Solid State Sci 2010, 12: 2113–2119.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Electrical EngineeringAdani Institute of Infrastructure EngineeringAhmedabadIndia

Personalised recommendations