Skip to main content

Advertisement

Log in

Recent Advances in the Genetics of Frontotemporal Dementia

  • Neurogenetics and Psychiatric Genetics (C Cruchaga and C Karch, Section Editors)
  • Published:
Current Genetic Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In this review, we highlight recent advances in the human genetics of frontotemporal dementia (FTD). In addition to providing a broad survey of genes implicated in FTD in the last several years, we also discuss variation in genes implicated in both hereditary leukodystrophies and risk for FTD (e.g., TREM2, TMEM106B, CSF1R, AARS2, NOTCH3).

Recent Findings

Over the past 5 years, genetic variation in approximately 50 genes has been confirmed or suggested to cause or influence risk for FTD and FTD-spectrum disorders. We first give background and discuss recent findings related to C9ORF72, GRN, and MAPT, the genes most commonly implicated in FTD. We then provide a broad overview of other FTD-associated genes and go on to discuss new findings in FTD genetics in East Asian populations, including pathogenic variation in CHCHD10, which may represent a frequent cause of disease in Chinese populations. Finally, we consider recent insights gleaned from genome-wide association and genetic pleiotropy studies.

Summary

Recent genetic discoveries highlight cellular pathways involving autophagy, the endolysosomal system, and neuroinflammation and reveal an intriguing overlap between genes that confer risk for leukodystrophy and FTD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Goldman JS, Farmer JM, Wood EM, Johnson JK, Boxer A, Neuhaus J, et al. Comparison of family histories in FTLD subtypes and related tauopathies. Neurology. Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 2005;65:1817–9.

    Article  PubMed  CAS  Google Scholar 

  2. Rohrer JD, Guerreiro R, Vandrovcova J, Uphill J, Reiman D, Beck J, et al. The heritability and genetics of frontotemporal lobar degeneration. Neurology. Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 2009;73:1451–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Seelaar H, Kamphorst W, Rosso SM, Azmani A, Masdjedi R, de Koning I, et al. Distinct genetic forms of frontotemporal dementia. Neurology. Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 2008;71:1220–6.

    Article  PubMed  CAS  Google Scholar 

  4. Cacace R, Sleegers K, Van Broeckhoven C. Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimers Dement. 2016;12:733–48.

    Article  PubMed  Google Scholar 

  5. Mackenzie IRA, Neumann M. Molecular neuropathology of frontotemporal dementia: insights into disease mechanisms from postmortem studies. J Neurochem. Wiley/Blackwell (10.1111). 2016;138 Suppl 1:54–70.

    Article  PubMed  CAS  Google Scholar 

  6. Van Mossevelde S, Engelborghs S, van der Zee J, Van Broeckhoven C. Genotype-phenotype links in frontotemporal lobar degeneration. Nat Rev Neurol Nature Publishing Group. 2018;14:363–78.

    Article  PubMed  CAS  Google Scholar 

  7. Pottier C, Ravenscroft TA, Sanchez-Contreras M, Rademakers R. Genetics of FTLD: overview and what else we can expect from genetic studies. J Neurochem. Wiley/Blackwell (10.1111). 2016;138 Suppl 1:32–53.

    Article  PubMed  CAS  Google Scholar 

  8. Poorkaj P, Bird TD, Wijsman E, Nemens E, Garruto RM, Anderson L, et al. Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol. Wiley-Blackwell. 1998;43:815–25.

    Article  PubMed  CAS  Google Scholar 

  9. Clark LN, Poorkaj P, Wszolek Z, Geschwind DH, Nasreddine ZS, Miller B, et al. Pathogenic implications of mutations in the tau gene in pallido-ponto-nigral degeneration and related neurodegenerative disorders linked to chromosome 17. Proc Natl Acad Sci U S A. 1998;95:13103–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature. Nat Publ Group. 1998;393:702–5.

    CAS  Google Scholar 

  11. Spillantini MG, Murrell JR, Goedert M, Farlow MR, Klug A, Ghetti B. Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci U S A. 1998;95:7737–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Rea SL, Majcher V, Searle MS, Layfield R. SQSTM1 mutations—bridging Paget disease of bone and ALS/FTLD. Exp Cell Res. 2014;325:27–37.

    Article  PubMed  CAS  Google Scholar 

  13. Deleon J, Miller BL. Frontotemporal dementia. Handb Clin Neurol. 2018;148:409–30.

    Article  PubMed  Google Scholar 

  14. van der Zee J, Van Langenhove T, Kovacs GG, Dillen L, Deschamps W, Engelborghs S, et al. Rare mutations in SQSTM1 modify susceptibility to frontotemporal lobar degeneration. Acta Neuropathol. Springer Berlin Heidelberg. 2014;128:397–410.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Dejesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72:245–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Domoto-Reilly K, Davis MY, Keene CD, Bird TD. Unusually long duration and delayed penetrance in a family with FTD and mutation in MAPT (V337M). Tsuang DW, Bird TD, editors. Am J Med Genet B Neuropsychiatr Genet Wiley-Blackwell. 2017;174:70–4.

    Article  PubMed  CAS  Google Scholar 

  17. Sun L, Chen K, Li X, Xiao S. Rapidly progressive frontotemporal dementia associated with MAPT mutation G389R. J Alzheimers Dis IOS Press. 2017;55:777–85.

    Article  PubMed  CAS  Google Scholar 

  18. Ygland E, van Westen D, Englund E, Rademakers R, Wszolek ZK, Nilsson K, et al. Slowly progressive dementia caused by MAPT R406W mutations: longitudinal report on a new kindred and systematic review. Alzheimers Res Ther BioMed Central. 2018;10:2.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Carney RM, Kohli MA, Kunkle BW, Naj AC, Gilbert JR, Zuchner S, et al. Parkinsonism and distinct dementia patterns in a family with the MAPT R406W mutation. Alzheimers Dement. 2014;10:360–5.

    Article  PubMed  Google Scholar 

  20. Behnam M, Ghorbani F, Shin J-H, Kim D-S, Jang H, Nouri N, et al. Homozygous MAPT R406W mutation causing FTDP phenotype: a unique instance of a unique mutation. Gene. 2015;570:150–2.

    Article  PubMed  CAS  Google Scholar 

  21. Ng ASL, Sias AC, Pressman PS, Fong JC, Karydas AM, Zanto TP, et al. Young-onset frontotemporal dementia in a homozygous tau R406W mutation carrier. Ann Clin Transl Neurol. Wiley-Blackwell. 2015;2:1124–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D, et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature. 2006;442:920–4.

    Article  PubMed  CAS  Google Scholar 

  23. Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C, et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature. 2006;442:916–9.

    Article  PubMed  CAS  Google Scholar 

  24. Wauters E, Van Mossevelde S, van der Zee J, Cruts M, Van Broeckhoven C. Modifiers of GRN-associated frontotemporal lobar degeneration. Trends Mol Med. 2017;23:962–79.

    Article  PubMed  CAS  Google Scholar 

  25. Cruchaga C, Graff C, Chiang H-H, Wang J, Hinrichs AL, Spiegel N, et al. Association of TMEM106B gene polymorphism with age at onset in granulin mutation carriers and plasma granulin protein levels. Arch Neurol American Medical Association. 2011;68:581–6.

    PubMed  PubMed Central  Google Scholar 

  26. Mukherjee O, Pastor P, Cairns NJ, Chakraverty S, Kauwe JSK, Shears S, et al. HDDD2 is a familial frontotemporal lobar degeneration with ubiquitin-positive, tau-negative inclusions caused by a missense mutation in the signal peptide of progranulin. Ann Neurol Wiley-Blackwell. 2006;60:314–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Smith KR, Damiano J, Franceschetti S, Carpenter S, Canafoglia L, Morbin M, et al. Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am J Hum Genet. 2012;90:1102–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. • van der Zee J, Mariën P, Crols R, Van Mossevelde S, Dillen L, Perrone F, et al. Mutated CTSF in adult-onset neuronal ceroid lipofuscinosis and FTD. Neurol Genet. 2016;2:e102 Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. Provides evidence that additional genes involved in neuronal ceroid lipofuscinosis may confer risk for FTD.

  29. Bras J, Djaldetti R, Alves AM, Mead S, Darwent L, Lleo A, et al. Exome sequencing in a consanguineous family clinically diagnosed with early-onset Alzheimer’s disease identifies a homozygous CTSF mutation. Neurobiol Aging. 2016;46:236.e1–6.

    Article  CAS  Google Scholar 

  30. • Geier EG, Bourdenx M, Storm NJ, Cochran JN, Sirkis DW, Hwang J-H, et al. Rare variants in the neuronal ceroid lipofuscinosis gene MFSD8 are candidate risk factors for frontotemporal dementia. Acta Neuropathol. 2018;526, 1–18 Springer Berlin Heidelberg; Provides evidence that additional genes involved in neuronal ceroid lipofuscinosis may confer risk for FTD.

  31. Watts GDJ, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D, et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat genet. Nat Publ Group. 2004;36:377–81.

    CAS  Google Scholar 

  32. Skibinski G, Parkinson NJ, Brown JM, Chakrabarti L, Lloyd SL, Hummerich H, et al. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat Genet. 2005;37:806–8.

    Article  PubMed  CAS  Google Scholar 

  33. Benajiba L, Le Ber I, Camuzat A, Lacoste M, Thomas-Anterion C, Couratier P, et al. TARDBP mutations in motoneuron disease with frontotemporal lobar degeneration. Ann Neurol. Wiley-Blackwell. 2009;65:470–3.

    Article  PubMed  CAS  Google Scholar 

  34. Van Langenhove T, van der Zee J, Sleegers K, Engelborghs S, Vandenberghe R, Gijselinck I, et al. Genetic contribution of FUS to frontotemporal lobar degeneration. Neurology. Wolters Kluwer Health, Inc on behalf of the American Academy of Neurology. 2010;74:366–71.

    Article  PubMed  Google Scholar 

  35. Deng H-X, Chen W, Hong S-T, Boycott KM, Gorrie GH, Siddique N, et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature. 2011;477:211–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72:257–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Harms M, Benitez BA, Cairns N, Cooper B, Cooper P, Mayo K, et al. C9orf72 hexanucleotide repeat expansions in clinical Alzheimer disease. JAMA Neurol American Medical Association. 2013;70:736–41.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gao F-B, Almeida S, Lopez-Gonzalez R. Dysregulated molecular pathways in amyotrophic lateral sclerosis-frontotemporal dementia spectrum disorder. EMBO J EMBO Press. 2017;36:2931–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Rubino E, Rainero I, Chiò A, Rogaeva E, Galimberti D, Fenoglio P, et al. SQSTM1 mutations in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Neurology. Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 2012;79:1556–62.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Haack TB, Ignatius E, Calvo-Garrido J, Iuso A, Isohanni P, Maffezzini C, et al. Absence of the autophagy adaptor SQSTM1/p62 causes childhood-onset neurodegeneration with Ataxia, dystonia, and gaze palsy. Am J Hum Genet. 2016;99:735–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ito H, Nakamura M, Komure O, Ayaki T, Wate R, Maruyama H, et al. Clinicopathologic study on an ALS family with a heterozygous E478G optineurin mutation. Acta Neuropathol. Springer-Verlag. 2011;122:223–9.

    Article  PubMed  Google Scholar 

  42. Czell D, Andersen PM, Neuwirth C, Morita M, Weber M. Progressive aphasia as the presenting symptom in a patient with amyotrophic lateral sclerosis with a novel mutation in the OPTN gene. Amyotroph Lateral Scler Frontotemporal Degener. 2013;14:138–40.

    Article  PubMed  Google Scholar 

  43. Pottier C, Bieniek KF, Finch N, van de Vorst M, Baker M, Perkersen R, et al. Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease. Acta Neuropathol. Springer Berlin Heidelberg. 2015;130:77–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Freischmidt A, Wieland T, Richter B, Ruf W, Schaeffer V, Müller K, et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat Neurosci Nat Publ Group. 2015;18:631–6.

    Article  PubMed  CAS  Google Scholar 

  45. Gijselinck I, Van Mossevelde S, van der Zee J, Sieben A, Philtjens S, Heeman B, et al. Loss of TBK1 is a frequent cause of frontotemporal dementia in a Belgian cohort. Neurology. Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 2015;85:2116–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. • Xu D, Jin T, Zhu H, Chen H, Ofengeim D, Zou C, et al. TBK1 suppresses RIPK1-driven apoptosis and inflammation during development and in aging. Cell. 2018;174:1477–1491.e19 Provides evidence that a regulator of autophagy influences the inflammatory response.

  47. • Sliter DA, Martinez J, Hao L, Chen X, Sun N, Fischer TD, et al. Parkin and PINK1 mitigate STING-induced inflammation. Nature. 2018;561:258–62 Nature Publishing Group. Provides evidence that regulators of mitophagy influence the inflammatory response.

  48. Zimmermann M, Wilke C, Schulte C, Hoffmann J, Klopfer J, Reimold M, et al. Biallelic Parkin (PARK2) mutations can cause a bvFTD phenotype without clinically relevant parkinsonism. Parkinsonism Relat Disord. 2018;55:145–147.

  49. Mackenzie IR, Nicholson AM, Sarkar M, Messing J, Purice MD, Pottier C, et al. TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and Alter stress granule dynamics. Neuron. 2017;95:808–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. van der Spek RA, van Rheenen W, Pulit SL, Kenna KP, Ticozzi N, Kooyman M, et al. Reconsidering the causality of TIA1 mutations in ALS. Amyotroph Lateral Scler Frontotemporal Degener. 2018;19:1–3.

    Article  PubMed  Google Scholar 

  51. Baradaran-Heravi Y, Dillen L, Nguyen HP, Van Mossevelde S, Baets J, De Jonghe P, et al. No supportive evidence for TIA1 gene mutations in a European cohort of ALS-FTD spectrum patients. Neurobiol Aging. 2018;69:293.e9–293.e11.

    Article  CAS  Google Scholar 

  52. Heck MV, Azizov M, Stehning T, Walter M, Kedersha N, Auburger G. Dysregulated expression of lipid storage and membrane dynamics factors in Tia1 knockout mouse nervous tissue. Neurogenetics. Springer Berlin Heidelberg. 2014;15:135–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Williams KL, Topp S, Yang S, Smith B, Fifita JA, Warraich ST, et al. CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia. Nat Commun Nat Publ Group. 2016;7:11253.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron. 2016;89:37–53.

    Article  PubMed  CAS  Google Scholar 

  55. Chen-Plotkin AS, Geser F, Plotkin JB, Clark CM, Kwong LK, Yuan W, et al. Variations in the progranulin gene affect global gene expression in frontotemporal lobar degeneration. Hum Mol Genet. 2008;17:1349–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Greene CS, Krishnan A, Wong AK, Ricciotti E, Zelaya RA, Himmelstein DS, et al. Understanding multicellular function and disease with human tissue-specific networks. Nat Genet Nat Publ Group. 2015;47:569–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Paloneva J, Kestilä M, Wu J, Salminen A, Böhling T, Ruotsalainen V, et al. Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts. Nat Genet. 2000;25:357–61.

    Article  PubMed  CAS  Google Scholar 

  58. Paloneva J, Manninen T, Christman G, Hovanes K, Mandelin J, Adolfsson R, et al. Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am J Hum Genet. 2002;71:656–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Chouery E, Delague V, Bergougnoux A, Koussa S, Serre J-L, Mégarbané A. Mutations in TREM2 lead to pure early-onset dementia without bone cysts. Hum Mutat. 2008;29:E194–204.

    Article  PubMed  Google Scholar 

  60. Guerreiro R, Bilgic B, Guven G, Bras J, Rohrer J, Lohmann E, et al. Novel compound heterozygous mutation in TREM2 found in a Turkish frontotemporal dementia-like family. Neurobiol Aging. 2013;34:2890.e1–5.

    Article  CAS  Google Scholar 

  61. Guerreiro RJ, Lohmann E, Brás JM, Gibbs JR, Rohrer JD, Gurunlian N, et al. Using exome sequencing to reveal mutations in TREM2 presenting as a frontotemporal dementia-like syndrome without bone involvement. JAMA Neurol. 2013;70:78–84.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Le Ber I, De Septenville A, Guerreiro R, Bras J, Camuzat A, Caroppo P, et al. Homozygous TREM2 mutation in a family with atypical frontotemporal dementia. Neurobiol Aging. 2014;35:2419.e23–5.

    Article  CAS  Google Scholar 

  63. Ng ASL, Tan YJ, Yi Z, Tandiono M, Chew E, Dominguez J, et al. Targeted exome sequencing reveals homozygous TREM2 R47C mutation presenting with behavioral variant frontotemporal dementia without bone involvement. Neurobiol Aging. 2018;68:160.e15–9.

    Article  CAS  Google Scholar 

  64. Peplonska B, Berdynski M, Mandecka M, Barczak A, Kuzma-Kozakiewicz M, Barcikowska M, et al. TREM2 variants in neurodegenerative disorders in the polish population. Homozygosity and compound heterozygosity in FTD patients. Amyotroph Lateral Scler Frontotemporal Degener. 2018;19:407–12.

    Article  PubMed  CAS  Google Scholar 

  65. Redaelli V, Salsano E, Colleoni L, Corbetta P, Tringali G, Del Sole A, et al. Frontotemporal dementia and chorea associated with a compound heterozygous TREM2 mutation. J Alzheimers Dis. IOS Press. 2018;63:195–201.

    Article  PubMed  CAS  Google Scholar 

  66. Su W-H, Shi Z-H, Liu S-L, Wang X-D, Liu S, Ji Y. The rs75932628 and rs2234253 polymorphisms of the TREM2 gene were associated with susceptibility to frontotemporal lobar degeneration in Caucasian populations. Ann Hum Genet. Wiley/Blackwell (10.1111). 2018;82:177–85.

    Article  PubMed  CAS  Google Scholar 

  67. Carmona S, Zahs K, Wu E, Dakin K, Bras J, Guerreiro R. The role of TREM2 in Alzheimer's disease and other neurodegenerative disorders. Lancet Neurol. 2018;17:721–30.

    Article  PubMed  CAS  Google Scholar 

  68. Benitez BA, Cruchaga C, United States–Spain Parkinson’s Disease Research Group. TREM2 and neurodegenerative disease. N Engl J Med. 2013;369:1567–8.

    PubMed  PubMed Central  Google Scholar 

  69. Rademakers R, Baker M, Nicholson AM, Rutherford NJ, Finch N, Soto-Ortolaza A, et al. Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat Genet Nat Publ Group. 2011;44:200–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Gore E, Manley A, Dees D, Appleby BS, Lerner AJ. A young-onset frontal dementia with dramatic calcifications due to a novel CSF1R mutation. Neurocase. 2016;22:257–62.

    Article  PubMed  Google Scholar 

  71. Kawakami I, Iseki E, Kasanuki K, Minegishi M, Sato K, Hino H, et al. A family with hereditary diffuse leukoencephalopathy with spheroids caused by a novel c.2442+2T>C mutation in the CSF1R gene. J Neurol Sci. 2016;367:349–55.

    Article  PubMed  CAS  Google Scholar 

  72. Kim E-J, Kim Y-E, Jang J-H, Cho E-H, Na DL, Seo SW, et al. Analysis of frontotemporal dementia, amyotrophic lateral sclerosis, and other dementia-related genes in 107 Korean patients with frontotemporal dementia. Neurobiol. Aging. 2018;72:186.e1–186.e7.

  73. Van Deerlin VM, Sleiman PMA, Martinez-Lage M, Chen-Plotkin A, Wang L-S, Graff-Radford NR, et al. Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat Genet Nat Publ Group. 2010;42:234–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Finch N, Carrasquillo MM, Baker M, Rutherford NJ, Coppola G, Dejesus-Hernandez M, et al. TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers. Neurology. Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 2011;76:467–74.

    Article  PubMed  CAS  Google Scholar 

  75. van Blitterswijk M, Mullen B, Nicholson AM, Bieniek KF, Heckman MG, Baker MC, et al. TMEM106B protects C9ORF72 expansion carriers against frontotemporal dementia. Acta Neuropathol. 2014;127(3):397–406.

  76. • Simons C, Dyment D, Bent SJ, Crawford J, D'Hooghe M, Kohlschütter A, et al. A recurrent de novo mutation in TMEM106B causes hypomyelinating leukodystrophy. Brain. 2017;140:3105–11 An important FTD risk modifier is implicated in leukodystrophy.

    Article  PubMed  PubMed Central  Google Scholar 

  77. • Yan H, Kubisiak T, Ji H, Xiao J, Wang J, Burmeister M. The recurrent mutation in TMEM106B also causes hypomyelinating leukodystrophy in China and is a CpG hotspot. Brain. 2018;141:e36 An important FTD risk modifier is implicated in leukodystrophy.

    Article  PubMed  Google Scholar 

  78. Zhou X, Sun L, Bastos de Oliveira F, Qi X, Brown WJ, Smolka MB, et al. Prosaposin facilitates sortilin-independent lysosomal trafficking of progranulin. J Cell Biol. Rockefeller University Press. 2015;210:991–1002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Nicholson AM, Finch NA, Almeida M, Perkerson RB, van Blitterswijk M, Wojtas A, et al. Prosaposin is a regulator of progranulin levels and oligomerization. Nat Commun Nat Publ Group. 2016;7:11992.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Motta M, Tatti M, Furlan F, Celato A, Di Fruscio G, Polo G, et al. Clinical, biochemical and molecular characterization of prosaposin deficiency. Clin Genet. 8 ed. Wiley/Blackwell (10.1111). 2016;90:220–9.

    Article  PubMed  CAS  Google Scholar 

  81. Carrasquillo MM, Nicholson AM, Finch N, Gibbs JR, Baker M, Rutherford NJ, et al. Genome-wide screen identifies rs646776 near sortilin as a regulator of progranulin levels in human plasma. Am J Hum Genet. 2010;87:890–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Hu F, Padukkavidana T, Vægter CB, Brady OA, Zheng Y, Mackenzie IR, et al. Sortilin-mediated endocytosis determines levels of the frontotemporal dementia protein, progranulin. Neuron. 2010;68:654–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Philtjens S, Van Mossevelde S, van der Zee J, Wauters E, Dillen L, Vandenbulcke M, et al. Rare nonsynonymous variants in SORT1 are associated with increased risk for frontotemporal dementia. Neurobiol Aging. 2018;66:181.e3–181.e10.

    Article  CAS  Google Scholar 

  84. Dallabona C, Diodato D, Kevelam SH, Haack TB, Wong L-J, Salomons GS, et al. Novel (ovario) leukodystrophy related to AARS2 mutations. Neurology. Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 2014;82:2063–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Lynch DS, Zhang WJ, Lakshmanan R, Kinsella JA, Uzun GA, Karbay M, et al. Analysis of mutations in AARS2 in a series of CSF1R-negative patients with adult-onset leukoencephalopathy with axonal spheroids and pigmented glia. JAMA Neurol. American Medical Association. 2016;73:1433–9.

    Article  PubMed  Google Scholar 

  86. Lee J-M, Yang H-J, Kwon J-H, Kim W-J, Kim S-Y, Lee E-M, et al. Two Korean siblings with recently described ovarioleukodystrophy related to AARS2 mutations. Eur J Neurol. Wiley/Blackwell (10.1111). 2017;24:e21–2.

    Article  PubMed  Google Scholar 

  87. Hamatani M, Jingami N, Tsurusaki Y, Shimada S, Shimojima K, Asada-Utsugi M, et al. The first Japanese case of leukodystrophy with ovarian failure arising from novel compound heterozygous AARS2 mutations. J Hum Genet Nature Publishing Group. 2016;61:899–902.

    Article  PubMed  CAS  Google Scholar 

  88. Taglia I, Di Donato I, Bianchi S, Cerase A, Monti L, Marconi R, et al. AARS2-related ovarioleukodystrophy: Clinical and neuroimaging features of three new cases. Acta Neurol Scand Wiley/Blackwell (10.1111). 2018;42:S27.

    Google Scholar 

  89. Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature. Nat Publ Group. 1996;383:707–10.

    Article  PubMed  CAS  Google Scholar 

  90. Alexander SK, Brown JM, Graham A, Nestor PJ. CADASIL presenting with a behavioural variant frontotemporal dementia phenotype. J Clin Neurosci. 2014;21:165–7.

    Article  PubMed  CAS  Google Scholar 

  91. Kim H-J, Kim HY, Paek WK, Park A, Young Park M, Ki CS, et al. Amyotrophic lateral sclerosis and frontotemporal lobar degeneration in association with CADASIL. Neurologist. 2012;18:92–5.

    Article  PubMed  Google Scholar 

  92. Guerreiro RJ, Lohmann E, Kinsella E, Brás JM, Luu N, Gurunlian N, et al. Exome sequencing reveals an unexpected genetic cause of disease: NOTCH3 mutation in a Turkish family with Alzheimer’s disease. Neurobiol Aging. 2012;33:1008.e17–23.

    Article  CAS  Google Scholar 

  93. Che X-Q, Zhao Q-H, Huang Y, Li X, Ren R-J, Chen S-D, et al. Genetic features of MAPT, GRN, C9orf72 and CHCHD10 gene mutations in Chinese patients with frontotemporal dementia. Curr Alzheimer Res. 2017;14:1102–8.

    Article  PubMed  CAS  Google Scholar 

  94. Shi Z, Liu S, Xiang L, Wang Y, Liu M, Liu S, et al. Frontotemporal dementia-related gene mutations in clinical dementia patients from a Chinese population. J Hum Genet. Nature Publishing Group. 2016;61:1003–8.

    Article  PubMed  CAS  Google Scholar 

  95. Tang M, Gu X, Wei J, Jiao B, Zhou L, Zhou Y, et al. Analyses MAPT, GRN, and C9orf72 mutations in Chinese patients with frontotemporal dementia. Neurobiol Aging. 2016;46:235.e11–5.

    Article  CAS  Google Scholar 

  96. Jiao B, Tang B, Liu X, Yan X, Zhou L, Yang Y, et al. Identification of C9orf72 repeat expansions in patients with amyotrophic lateral sclerosis and frontotemporal dementia in mainland China. Neurobiol Aging. 2014;35:936.e19–22.

    Article  CAS  Google Scholar 

  97. Liu F, Liu Q, Lu CX, Cui B, Guo XN, Wang RR, et al. Identification of a novel loss-of-function C9orf72 splice site mutation in a patient with amyotrophic lateral sclerosis. Neurobiol Aging. 2016;47:219.e1–5.

    Article  CAS  Google Scholar 

  98. Chen Y, Lin Z, Chen X, Cao B, Wei Q, Ou R, et al. Large C9orf72 repeat expansions are seen in Chinese patients with sporadic amyotrophic lateral sclerosis. Neurobiol Aging. 2016;38:217.e15–22.

    Article  CAS  Google Scholar 

  99. Mok K, Traynor BJ, Schymick J, Tienari PJ, Laaksovirta H, Peuralinna T, et al. Chromosome 9 ALS and FTD locus is probably derived from a single founder. Neurobiol Aging. 2012;33:209.e3–8.

    Article  CAS  Google Scholar 

  100. Bannwarth S, Ait-El-Mkadem S, Chaussenot A, Genin EC, Lacas-Gervais S, Fragaki K, et al. A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain. 2014;137:2329–45.

    Article  PubMed  PubMed Central  Google Scholar 

  101. • Jiao B, Xiao T, Hou L, Gu X, Zhou Y, Zhou L, et al. High prevalence of CHCHD10 mutation in patients with frontotemporal dementia from China. Brain. 2016;139:e21 Indicates that pathogenic CHCHD10 mutations may be a common cause of FTD in Chinese populations.

    Article  PubMed  Google Scholar 

  102. Tsai P-C, Liu Y-C, Lin K-P, Liu Y-T, Liao Y-C, Hsiao C-T, et al. Mutational analysis of TBK1 in Taiwanese patients with amyotrophic lateral sclerosis. Neurobiol Aging. 2016;40:191.e11–6.

    Article  CAS  Google Scholar 

  103. Smith BN, Topp SD, Fallini C, Shibata H, Chen H-J, Troakes C, et al. Mutations in the vesicular trafficking protein annexin A11 are associated with amyotrophic lateral sclerosis. Sci Transl Med. American Association for the Advancement of Science. 2017;9:eaad9157.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Zhang K, Liu Q, Liu K, Shen D, Tai H, Shu S, et al. ANXA11 mutations prevail in Chinese ALS patients with and without cognitive dementia. Neurol Genet. Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 2018;e237:4.

    Google Scholar 

  105. Ferrari R, Hernandez DG, Nalls MA, Rohrer JD, Ramasamy A, Kwok JBJ, et al. Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurol. 2014;13:686–99.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Mishra A, Ferrari R, Heutink P, Hardy J, Pijnenburg Y, Posthuma D, et al. Gene-based association studies report genetic links for clinical subtypes of frontotemporal dementia. Brain. 2017;140:1437–46.

    Article  PubMed  Google Scholar 

  107. Höglinger GU, Melhem NM, Dickson DW, Sleiman PMA, Wang L-S, Klei L, et al. Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat Genet. Nat Publ Group. 2011;43:699–705.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Chen JA, Chen Z, Won H, Huang AY, Lowe JK, Wojta K, et al. Joint genome-wide association study of progressive supranuclear palsy identifies novel susceptibility loci and genetic correlation to neurodegenerative diseases. Mol Neurodegener. BioMed Central. 2018;13:41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Sanchez-Contreras MY, Kouri N, Cook CN, Serie DJ, Heckman MG, Finch NA, et al. Replication of progressive supranuclear palsy genome-wide association study identifies SLCO1A2 and DUSP10 as new susceptibility loci. Mol Neurodegener. BioMed Central. 2018;13:37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Kouri N, Ross OA, Dombroski B, Younkin CS, Serie DJ, Soto-Ortolaza A, et al. Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy. Nat Commun Nat Publ Group. 2015;6:7247.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Pottier C, Zhou X, Perkerson RB, Baker M, Jenkins GD, Serie DJ, et al. Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurol. 2018;17:548–58.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Zhang M, Ferrari R, Tartaglia MC, Keith J, Surace EI, Wolf U, et al. A C6orf10/LOC101929163 locus is associated with age of onset in C9orf72 carriers. Brain. 2018;141:2895–907.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Ferrari R, Wang Y, Vandrovcova J, Guelfi S, Witeolar A, Karch CM, et al. Genetic architecture of sporadic frontotemporal dementia and overlap with Alzheimer’s and Parkinson’s diseases. J Neurol Neurosurg Psychiatr. 2016;88(2):152–164.

  114. Shi Y, Yamada K, Liddelow SA, Smith ST, Zhao L, Luo W, et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature Nat Publ Group. 2017;549:523–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Yokoyama JS, Karch CM, Fan CC, Bonham LW, Kouri N, Ross OA, et al. Shared genetic risk between corticobasal degeneration, progressive supranuclear palsy, and frontotemporal dementia. Acta Neuropathol. Springer Berlin Heidelberg. 2017;133:825–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Bonham LW, Karch CM, Fan CC, Tan C, Geier EG, Wang Y, et al. CXCR4 involvement in neurodegenerative diseases. Transl Psychiatry. Nat Publ Group. 2018;8:73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Karch CM, Wen N, Fan CC, Yokoyama JS, Kouri N, Ross OA, et al. Selective genetic overlap between amyotrophic lateral sclerosis and diseases of the frontotemporal dementia spectrum. JAMA Neurol. 2018;75(7):860–875.

  118. Broce I, Karch CM, Wen N, Fan CC, Wang Y, Hong Tan C, et al. Immune-related genetic enrichment in frontotemporal dementia: an analysis of genome-wide association studies. PLoS Med Public Libr Sci. 2018;e1002487:15.

    Google Scholar 

Download references

Acknowledgements

We thank Lin Yuan (UCSF) for her helpful reading of the manuscript.

Funding

Primary research support in the Yokoyama lab is provided by the Rainwater Charitable Foundation, the Bluefield Project to Cure FTD, the Association for Frontotemporal Degeneration Susan Marcus Memorial Fund Clinical Research Grant, the Larry L. Hillblom Foundation (2016-A-005-SUP), the National Institute on Aging (K01 AG049152), and the John Douglas French Alzheimer’s Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer S. Yokoyama.

Ethics declarations

Conflict of Interest

Daniel W. Sirkis, Ethan G. Geier, Luke W. Bonham, Celeste M. Karch, and Jennifer S. Yokoyama each declare no potential conflicts of interest.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neurogenetics and Psychiatric Genetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirkis, D.W., Geier, E.G., Bonham, L.W. et al. Recent Advances in the Genetics of Frontotemporal Dementia. Curr Genet Med Rep 7, 41–52 (2019). https://doi.org/10.1007/s40142-019-0160-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40142-019-0160-6

Keywords

Navigation