Skip to main content

Advertisement

Log in

Spasticity Management After Spinal Cord Injury

  • Spinal Cord Injury Rehabilitation (J Donovan, Section Editor)
  • Published:
Current Physical Medicine and Rehabilitation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To review current treatment options and research for patients with spasticity after spinal cord injury.

Recent Findings

Spasticity is a common complication after spinal cord injury (SCI). Recent studies report the significant impact that spasticity has on the quality of life in patients after SCI which highlights the importance of optimizing spasticity management. There are new reviews and research on the various strategies for spasticity management including therapy, medications, injections, and surgeries.

Summary

As spasticity significantly affects quality of life (QOL), optimal management of spasticity is essential. Spasticity management in patients with SCI is a joint decision made with the patient after considering the type and severity of the spasticity, goals, as well as the risks and benefits of the treatment options. This article reviews the current management options and research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lance JW. Symposium. In: Feldman RG, Young RR, Koella WP, editors. Spasticity: disordered motor control. Chicago: Year Book Medical Pubs; 1980. p. 485–95.

    Google Scholar 

  2. Pandyan AD, Gregoric M, Barnes MP, Wood D, Van Wijck F, Burridge J, et al. Spasticity: clinical perceptions, neurological realities and meaningful measurement. Disabil Rehabil. 2005;27(1–2):2–6. https://doi.org/10.1080/09638280400014576.

    Article  PubMed  CAS  Google Scholar 

  3. •• Lanig IS, New PW, Burns AS, Bilsky G, Benito-Penalva J, Bensmail D, et al. Optimizing the management of spasticity in people with spinal cord damage: a clinical care pathway for assessment and treatment decision making from the ability network, an international initiative. Arch Phys Med Rehabil. 2018;99(8):1681–7. https://doi.org/10.1016/j.apmr.2018.01.017. This international initiative by the Ability Network developed a consensus clinical care pathway for the assessment and mangement for patients with spinal cord damage. The pathway highlights the importance of a patient centered individualized approach as well as the need for an interdisclipinary coordination of care, patient involvement in goal setting, and assessments and outcome measures to practical spasticity management.

    Article  PubMed  Google Scholar 

  4. •• Burns AS, Lanig I, Grabljevec K, New PW, Bensmail D, Ertzgaard P, et al. Optimizing the management of disabling spasticity following spinal cord damage: the ability network-an international initiative. Arch Phys Med Rehabil. 2016;97(12):2222–8. https://doi.org/10.1016/j.apmr.2016.04.025. This international initiative by the Ability Network developed consensus management algorithms to guide and standardize the assessment, treatment, and evaluation of patients with disabling spasticity.

    Article  PubMed  Google Scholar 

  5. Skold C, Levi R, Seiger A. Spasticity after traumatic spinal cord injury: nature, severity, and location. Arch Phys Med Rehabil. 1999;80(12):1548–57. https://doi.org/10.1016/s0003-9993(99)90329-5.

    Article  PubMed  CAS  Google Scholar 

  6. Maynard FM, Karunas RS, Waring WP 3rd. Epidemiology of spasticity following traumatic spinal cord injury. Arch Phys Med Rehabil. 1990;71(8):566–9.

    PubMed  CAS  Google Scholar 

  7. • Holtz KA, Lipson R, Noonan VK, Kwon BK, Mills PB. Prevalence and effect of problematic spasticity after traumatic spinal cord injury. Arch Phys Med Rehabil. 2017;98(6):1132–8. https://doi.org/10.1016/j.apmr.2016.09.124. This prospective cohort study of 465 patients with spinal cord injury describes the prevalence of spasticity and problematic spasticity at discharge, one year, two years, and five years post injury. Problematic spasticity was associated with cervicothoracic neurologic level and injury severity.

    Article  PubMed  Google Scholar 

  8. Adams MM, Hicks AL. Spasticity after spinal cord injury. Spinal Cord. 2005;43(10):577–86. https://doi.org/10.1038/sj.sc.3101757.

    Article  PubMed  CAS  Google Scholar 

  9. Burchiel KJ, Hsu FP. Pain and spasticity after spinal cord injury: mechanisms and treatment. Spine (Phila Pa 1976). 2001;26(24 Suppl):S146–60. https://doi.org/10.1097/00007632-200112151-00024.

    Article  CAS  Google Scholar 

  10. Cha S, Yun JH, Myong Y, Shin HI. Spasticity and preservation of skeletal muscle mass in people with spinal cord injury. Spinal Cord. 2019;57(4):317–23. https://doi.org/10.1038/s41393-018-0228-2.

    Article  PubMed  Google Scholar 

  11. Gorgey AS, Dudley GA. Spasticity may defend skeletal muscle size and composition after incomplete spinal cord injury. Spinal Cord. 2008;46(2):96–102. https://doi.org/10.1038/sj.sc.3102087.

    Article  PubMed  CAS  Google Scholar 

  12. Bravo-Esteban E, Taylor J, Abian-Vicen J, Albu S, Simon-Martinez C, Torricelli D, et al. Impact of specific symptoms of spasticity on voluntary lower limb muscle function, gait and daily activities during subacute and chronic spinal cord injury. NeuroRehabilitation. 2013;33(4):531–43. https://doi.org/10.3233/NRE-131000.

    Article  PubMed  CAS  Google Scholar 

  13. Andresen SR, Biering-Sorensen F, Hagen EM, Nielsen JF, Bach FW, Finnerup NB. Pain, spasticity and quality of life in individuals with traumatic spinal cord injury in Denmark. Spinal Cord. 2016;54(11):973–9. https://doi.org/10.1038/sc.2016.46.

    Article  PubMed  CAS  Google Scholar 

  14. Vural M, Yalcinkaya EY, Celik EC, Gunduz B, Bozan A, Erhan B. Assessment of quality of life in relation to spasticity severity and socio-demographic and clinical factors among patients with spinal cord injury. J Spinal Cord Med. 2018;43:1–8. https://doi.org/10.1080/10790268.2018.1543093.

    Article  Google Scholar 

  15. McKay WB, Sweatman WM, Field-Fote EC. The experience of spasticity after spinal cord injury: perceived characteristics and impact on daily life. Spinal Cord. 2018;56(5):478–86. https://doi.org/10.1038/s41393-017-0038-y.

    Article  PubMed  Google Scholar 

  16. van Cooten IP, Snoek GJ, Nene AV, de Groot S, Post MW. Functional hindrance due to spasticity in individuals with spinal cord injury during inpatient rehabilitation and 1 year thereafter. Spinal Cord. 2015;53(9):663–7. https://doi.org/10.1038/sc.2015.41.

    Article  PubMed  Google Scholar 

  17. Mills PB, Holtz KA, Szefer E, Noonan VK, Kwon BK. Early predictors of developing problematic spasticity following traumatic spinal cord injury: a prospective cohort study. J Spinal Cord Med. 2018;43:1–16. https://doi.org/10.1080/10790268.2018.1527082.

    Article  Google Scholar 

  18. • Richard-Denis A, Nguyen BH, Mac-Thiong JM. The impact of early spasticity on the intensive functional rehabilitation phase and community reintegration following traumatic spinal cord injury. J Spinal Cord Med. 2018:1–9. https://doi.org/10.1080/10790268.2018.1535638. This retrospective cohort study describes 150 patients with acute traumatic spinal cord injury of which 63.3% were noted to have spasticity during acute care. These patients with early spasticity developed more medical complications and had a longer length of stay in rehabilitation.

  19. Phadke CP, Balasubramanian CK, Ismail F, Boulias C. Revisiting physiologic and psychologic triggers that increase spasticity. Am J Phys Med Rehabil. 2013;92(4):357–69. https://doi.org/10.1097/phm.0b013e31827d68a4.

    Article  PubMed  Google Scholar 

  20. Paolucci S, Martinuzzi A, Scivoletto G, Smania N, Solaro C, Aprile I, et al. Assessing and treating pain associated with stroke, multiple sclerosis, cerebral palsy, spinal cord injury and spasticity. Evidence and recommendations from the Italian consensus conference on pain in neurorehabilitation. Eur J Phys Rehabil Med. 2016;52(6):827–40.

    PubMed  Google Scholar 

  21. Trompetto C, Marinelli L, Mori L, Pelosin E, Curra A, Molfetta L, et al. Pathophysiology of spasticity: implications for neurorehabilitation. Biomed Res Int. 2014;2014:354906–8. https://doi.org/10.1155/2014/354906.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Elbasiouny SM, Moroz D, Bakr MM, Mushahwar VK. Management of spasticity after spinal cord injury: current techniques and future directions. Neurorehabil Neural Repair. 2010;24(1):23–33. https://doi.org/10.1177/1545968309343213.

    Article  PubMed  Google Scholar 

  23. Khan F, Amatya B, Bensmail D, Yelnik A. Non-pharmacological interventions for spasticity in adults: an overview of systematic reviews. Ann Phys Rehabil Med. 2019;62(4):265–73. https://doi.org/10.1016/j.rehab.2017.10.001.

    Article  PubMed  Google Scholar 

  24. Naro A, Leo A, Russo M, Casella C, Buda A, Crespantini A, et al. Breakthroughs in the spasticity management: are non-pharmacological treatments the future? J Clin Neurosci. 2017;39:16–27. https://doi.org/10.1016/j.jocn.2017.02.044.

    Article  PubMed  Google Scholar 

  25. Smania N, Picelli A, Munari D, Geroin C, Ianes P, Waldner A, et al. Rehabilitation procedures in the management of spasticity. Eur J Phys Rehabil Med. 2010;46(3):423–38.

    PubMed  CAS  Google Scholar 

  26. Stevenson VL. Rehabilitation in practice: spasticity management. Clin Rehabil. 2010;24(4):293–304. https://doi.org/10.1177/0269215509353254.

    Article  PubMed  CAS  Google Scholar 

  27. •• Nene AV, Rainha Campos A, Grabljevec K, Lopes A, Skoog B, Burns AS. Clinical assessment of spasticity in people with spinal cord damage: recommendations from the Ability Network, an international initiative. Arch Phys Med Rehabil. 2018;99(9):1917–26. https://doi.org/10.1016/j.apmr.2018.01.018. This international initiative by the Ability Network developed consensus recommendations for clinical and functional measures for routine clinical practice for patients with spinal cord damage.

    Article  PubMed  Google Scholar 

  28. Harvey LA, Katalinic OM, Herbert RD, Moseley AM, Lannin NA, Schurr K. Stretch for the treatment and prevention of contracture: an abridged republication of a Cochrane systematic review. J Physiother. 2017;63(2):67–75. https://doi.org/10.1016/j.jphys.2017.02.014.

    Article  PubMed  Google Scholar 

  29. Ben M, Harvey L, Denis S, Glinsky J, Goehl G, Chee S, et al. Does 12 weeks of regular standing prevent loss of ankle mobility and bone mineral density in people with recent spinal cord injuries? Aust J Physiother. 2005;51(4):251–6. https://doi.org/10.1016/s0004-9514(05)70006-4.

    Article  PubMed  Google Scholar 

  30. Harvey L, de Jong I, Goehl G, Mardwedel S. Twelve weeks of nightly stretch does not reduce thumb web-space contractures in people with a neurological condition: a randomised controlled trial. Aust J Physiother. 2006;52(4):251–8. https://doi.org/10.1016/s0004-9514(06)70004-6.

    Article  PubMed  Google Scholar 

  31. Harvey LA, Byak AJ, Ostrovskaya M, Glinsky J, Katte L, Herbert RD. Randomised trial of the effects of four weeks of daily stretch on extensibility of hamstring muscles in people with spinal cord injuries. Aust J Physiother. 2003;49(3):176–81. https://doi.org/10.1016/s0004-9514(14)60237-3.

    Article  PubMed  Google Scholar 

  32. Harvey LA, Batty J, Crosbie J, Poulter S, Herbert RD. A randomized trial assessing the effects of 4 weeks of daily stretching on ankle mobility in patients with spinal cord injuries. Arch Phys Med Rehabil. 2000;81(10):1340–7. https://doi.org/10.1053/apmr.2000.9168.

    Article  PubMed  CAS  Google Scholar 

  33. Odeen I, Knutsson E. Evaluation of the effects of muscle stretch and weight load in patients with spastic paraplegia. Scand J Rehabil Med. 1981;13(4):117–21.

    PubMed  CAS  Google Scholar 

  34. Adams MM, Hicks AL. Comparison of the effects of body-weight-supported treadmill training and tilt-table standing on spasticity in individuals with chronic spinal cord injury. J Spinal Cord Med. 2011;34(5):488–94. https://doi.org/10.1179/2045772311Y.0000000028.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sadeghi M, McLvor J, Finlayson H, Sawatzky B. Static standing, dynamic standing and spasticity in individuals with spinal cord injury. Spinal Cord. 2016;54(5):376–82. https://doi.org/10.1038/sc.2015.160.

    Article  PubMed  CAS  Google Scholar 

  36. Dai AI, Demiryurek AT. Serial casting as an adjunct to botulinum toxin type a treatment in children with cerebral palsy and spastic paraparesis with scissoring of the lower extremities. J Child Neurol. 2017;32(7):671–5. https://doi.org/10.1177/0883073817701526.

    Article  PubMed  Google Scholar 

  37. Leung J, King C, Fereday S. Effectiveness of a programme comprising serial casting, botulinum toxin, splinting and motor training for contracture management: a randomized controlled trial. Clin Rehabil. 2019;33(6):1035–44. https://doi.org/10.1177/0269215519831337.

    Article  PubMed  Google Scholar 

  38. Dursun N, Gokbel T, Akarsu M, Dursun E. Randomized controlled trial on effectiveness of intermittent serial casting on spastic equinus foot in children with cerebral palsy after Botulinum toxin-a treatment. Am J Phys Med Rehabil. 2017;96(4):221–5. https://doi.org/10.1097/PHM.0000000000000627.

    Article  PubMed  Google Scholar 

  39. Ottoson D. The effects of temperature on the isolated muscle spindle. J Physiol. 1965;180(3):636–48. https://doi.org/10.1113/jphysiol.1965.sp007721.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Miglietta O. Action of cold on spasticity. Am J Phys Med. 1973;52(4):198–205.

    PubMed  CAS  Google Scholar 

  41. Lehmann J. Therapeutic heat and cold. Balitmore: Williams & Wilkins; 1982.

    Google Scholar 

  42. Sahin N, Ugurlu H, Karahan AY. Efficacy of therapeutic ultrasound in the treatment of spasticity: a randomized controlled study. NeuroRehabilitation. 2011;29(1):61–6. https://doi.org/10.3233/NRE-2011-0678.

    Article  PubMed  Google Scholar 

  43. Ansari NN, Naghdi S, Hasson S, Mousakhani A, Nouriyan A, Omidvar Z. Inter-rater reliability of the modified modified Ashworth scale as a clinical tool in measurements of post-stroke elbow flexor spasticity. NeuroRehabilitation. 2009;24(3):225–9. https://doi.org/10.3233/NRE-2009-0472.

    Article  PubMed  Google Scholar 

  44. Kesiktas N, Paker N, Erdogan N, Gulsen G, Bicki D, Yilmaz H. The use of hydrotherapy for the management of spasticity. Neurorehabil Neural Repair. 2004;18(4):268–73. https://doi.org/10.1177/1545968304270002.

    Article  PubMed  CAS  Google Scholar 

  45. Zamparo P, Pagliaro P. The energy cost of level walking before and after hydro-kinesi therapy in patients with spastic paresis. Scand J Med Sci Sports. 1998;8(4):222–8. https://doi.org/10.1111/j.1600-0838.1998.tb00196.x.

    Article  PubMed  CAS  Google Scholar 

  46. Ellapen TJ, Hammill HV, Swanepoel M, Strydom GL. The benefits of hydrotherapy to patients with spinal cord injuries. Afr J Disabil. 2018;7(0):450. https://doi.org/10.4102/ajod.v7i0.450.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sadeghi M, Sawatzky B. Effects of vibration on spasticity in individuals with spinal cord injury: a scoping systematic review. Am J Phys Med Rehabil. 2014;93(11):995–1007. https://doi.org/10.1097/PHM.0000000000000098.

    Article  PubMed  Google Scholar 

  48. Estes S, Iddings JA, Ray S, Kirk-Sanchez NJ, Field-Fote EC. Comparison of single-session dose response effects of whole body vibration on spasticity and walking speed in persons with spinal cord injury. Neurotherapeutics. 2018;15(3):684–96. https://doi.org/10.1007/s13311-018-0644-1.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Vojinovic TJ, Linley E, Zivanovic A, Rui Loureiro CV. Effects of focal vibration and robotic assistive therapy on upper limb spasticity in incomplete spinal cord injury. IEEE Int Conf Rehabil Robot. 2019;2019:542–7. https://doi.org/10.1109/ICORR.2019.8779566.

    Article  PubMed  Google Scholar 

  50. In T, Jung K, Lee MG, Cho HY. Whole-body vibration improves ankle spasticity, balance, and walking ability in individuals with incomplete cervical spinal cord injury. NeuroRehabilitation. 2018;42(4):491–7. https://doi.org/10.3233/NRE-172333.

    Article  PubMed  Google Scholar 

  51. Miller LE, Zimmermann AK, Herbert WG. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis. Med Devices (Auckl). 2016;9:455–66. https://doi.org/10.2147/MDER.S103102.

    Article  Google Scholar 

  52. Stampacchia G, Rustici A, Bigazzi S, Gerini A, Tombini T, Mazzoleni S. Walking with a powered robotic exoskeleton: subjective experience, spasticity and pain in spinal cord injured persons. NeuroRehabilitation. 2016;39(2):277–83. https://doi.org/10.3233/NRE-161358.

    Article  PubMed  Google Scholar 

  53. Khan AS, Livingstone DC, Hurd CL, Duchcherer J, Misiaszek JE, Gorassini MA, et al. Retraining walking over ground in a powered exoskeleton after spinal cord injury: a prospective cohort study to examine functional gains and neuroplasticity. J Neuroeng Rehabil. 2019;16(1):145. https://doi.org/10.1186/s12984-019-0585-x.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ekelem A, Goldfarb M. Supplemental stimulation improves swing phase kinematics during exoskeleton assisted gait of SCI subjects with severe muscle spasticity. Front Neurosci. 2018;12:374. https://doi.org/10.3389/fnins.2018.00374.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bekhet AH, Bochkezanian V, Saab IM, Gorgey AS. The effects of electrical stimulation parameters in managing spasticity after spinal cord injury: a systematic review. Am J Phys Med Rehabil. 2019;98(6):484–99. https://doi.org/10.1097/PHM.0000000000001064.

    Article  PubMed  Google Scholar 

  56. Sivaramakrishnan A, Solomon JM, Manikandan N. Comparison of transcutaneous electrical nerve stimulation (TENS) and functional electrical stimulation (FES) for spasticity in spinal cord injury - a pilot randomized cross-over trial. J Spinal Cord Med. 2018;41(4):397–406. https://doi.org/10.1080/10790268.2017.1390930.

    Article  PubMed  Google Scholar 

  57. Thomaz SR, Cipriano G Jr, Formiga MF, Fachin-Martins E, Cipriano GFB, Martins WR, et al. Effect of electrical stimulation on muscle atrophy and spasticity in patients with spinal cord injury - a systematic review with meta-analysis. Spinal Cord. 2019;57(4):258–66. https://doi.org/10.1038/s41393-019-0250-z.

    Article  PubMed  Google Scholar 

  58. Bochkezanian V, Newton RU, Trajano GS, Blazevich AJ. Effects of neuromuscular electrical stimulation in people with spinal cord injury. Med Sci Sports Exerc. 2018;50(9):1733–9. https://doi.org/10.1249/MSS.0000000000001637.

    Article  PubMed  Google Scholar 

  59. Mills PB, Dossa F. Transcutaneous electrical nerve stimulation for management of limb spasticity: a systematic review. Am J Phys Med Rehabil. 2016;95(4):309–18. https://doi.org/10.1097/PHM.0000000000000437.

    Article  PubMed  Google Scholar 

  60. Aydin G, Tomruk S, Keles I, Demir SO, Orkun S. Transcutaneous electrical nerve stimulation versus baclofen in spasticity: clinical and electrophysiologic comparison. Am J Phys Med Rehabil. 2005;84(8):584–92. https://doi.org/10.1097/01.phm.0000171173.86312.69.

    Article  PubMed  Google Scholar 

  61. • DiPiro ND, Li C, Krause JS. A longitudinal study of self-reported spasticity among individuals with chronic spinal cord injury. Spinal Cord. 2018;56(3):218–25. https://doi.org/10.1038/s41393-017-0031-5. This longitudinal study of 1700 adults with chronic spinal cord injury reported the prevalence of spasticity over three years were similar during the course of the study but the severity increased over time for which medications was used.

    Article  PubMed  Google Scholar 

  62. • Holtz KA, Szefer E, Noonan VK, Kwon BK, Mills PB. Treatment patterns of in-patient spasticity medication use after traumatic spinal cord injury: a prospective cohort study. Spinal Cord. 2018;56(12):1176–83. https://doi.org/10.1038/s41393-018-0165-0. This prospective cohort study and retrospective medical chart review of 769 patients with spinal cord injury and spasticity describes the oral and injectable medication usage for treatment of spasticity.

    Article  PubMed  Google Scholar 

  63. Cabahug PG. Managing spasticity in a pregnant woman with spinal cord injury: a review. Curr Phys Med Rehabil Rep. 2018;6:245–56. https://doi.org/10.1007/s40141-018-0198-5.

    Article  Google Scholar 

  64. Walker HWAH, Hess MJ. Spasticity management. In: Kirshblum S, Lin V, editors. Spinal Cord Medicine. 3rd ed. New York: Springer Publishing Company; 2019. p. 472–82.

    Google Scholar 

  65. Rabchevsky AG, Kitzman PH. Latest approaches for the treatment of spasticity and autonomic dysreflexia in chronic spinal cord injury. Neurotherapeutics. 2011;8(2):274–82. https://doi.org/10.1007/s13311-011-0025-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Barbeau H, Richards CL, Bedard PJ. Action of cyproheptadine in spastic paraparetic patients. J Neurol Neurosurg Psychiatry. 1982;45(10):923–6. https://doi.org/10.1136/jnnp.45.10.923.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Hagenbach U, Luz S, Ghafoor N, Berger JM, Grotenhermen F, Brenneisen R, et al. The treatment of spasticity with Delta9-tetrahydrocannabinol in persons with spinal cord injury. Spinal Cord. 2007;45(8):551–62. https://doi.org/10.1038/sj.sc.3101982.

    Article  PubMed  CAS  Google Scholar 

  68. Potter PJ, Hayes KC, Segal JL, Hsieh JT, Brunnemann SR, Delaney GA, et al. Randomized double-blind crossover trial of fampridine-SR (sustained release 4-aminopyridine) in patients with incomplete spinal cord injury. J Neurotrauma. 1998;15(10):837–49. https://doi.org/10.1089/neu.1998.15.837.

    Article  PubMed  CAS  Google Scholar 

  69. Lui J, Sarai M, Mills PB. Chemodenervation for treatment of limb spasticity following spinal cord injury: a systematic review. Spinal Cord. 2015;53(4):252–64. https://doi.org/10.1038/sc.2014.241.

    Article  PubMed  CAS  Google Scholar 

  70. Barnes M. Botulinum toxin--mechanisms of action and clinical use in spasticity. J Rehabil Med. 2003;(41 Suppl):56–9. https://doi.org/10.1080/16501960310010151.

  71. Yan X, Lan J, Liu Y, Miao J. Efficacy and safety of botulinum toxin type A in spasticity caused by spinal cord injury: a randomized, controlled trial. Med Sci Monit. 2018;24:8160–71. https://doi.org/10.12659/MSM.911296.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. • Palazon-Garcia R, Alcobendas-Maestro M, Esclarin-de Ruz A, Benavente-Valdepenas AM. Treatment of spasticity in spinal cord injury with botulinum toxin. J Spinal Cord Med. 2019;42(3):281–7. https://doi.org/10.1080/10790268.2018.1479053. This descriptive retrospective study of 90 patients with spinal cord injury and spasticity describes that beneficial effects earlier botulinum toxin injection on range of motion measured and pain.

    Article  PubMed  Google Scholar 

  73. Dysport® (abobotulinumtoxinA) for injection, for intramuscular use. [package insert]. Ipsen Biopharm Limited; 2019.

  74. Xeomin (incobotulinumtoxinA) for injection, for intramuscular or intraglandular use. [package insert]. Merz Pharmaceuticals; 2019.

  75. Botox (onabotulinumtoxinA) for injection, for intramuscular, intradetrusor,or intradermal use. [package insert]. Allergan; 2019.

  76. Kirshblum S, Solinsky R, Jasey N, Hampton S, Didesch M, Seidel B, et al. Adverse event profiles of high dose Botulinum toxin injections for spasticity. PM R. 2020;12(4):349–55. https://doi.org/10.1002/pmrj.12240.

    Article  PubMed  Google Scholar 

  77. • Francisco GE. Botulinum toxin: dosing and dilution. Am J Phys Med Rehabil. 2004;83(10 Suppl):S30–7. https://doi.org/10.1097/01.phm.0000141128.62598.81. This retrospective analysis of adverse events of 889 botulinum toxin injection in 342 patients over a 3 year time period. Dysphagia and weakness were reported by patients who received greater than 600 units of onabotulinum and/or incobotulinum toxin A.

    Article  PubMed  Google Scholar 

  78. Gracies JM, Lugassy M, Weisz DJ, Vecchio M, Flanagan S, Simpson DM. Botulinum toxin dilution and endplate targeting in spasticity: a double-blind controlled study. Arch Phys Med Rehabil. 2009;90(1):9–16 e2. https://doi.org/10.1016/j.apmr.2008.04.030.

    Article  PubMed  Google Scholar 

  79. Scaglione F. Conversion Ratio between Botox®, Dysport®, and Xeomin® in Clinical Practice. Toxins (Basel). 2016;8(3).

  80. Walker HW, Lee MY, Bahroo LB, Hedera P, Charles D. Botulinum toxin injection techniques for the management of adult spasticity. PM R. 2015;7(4):417–27. https://doi.org/10.1016/j.pmrj.2014.09.021.

    Article  PubMed  Google Scholar 

  81. Karri J, Mas MF, Francisco GE, Li S. Practice patterns for spasticity management with phenol neurolysis. J Rehabil Med. 2017;49(6):482–8. https://doi.org/10.2340/16501977-2239.

    Article  PubMed  Google Scholar 

  82. Escaldi S. Neurolysis: a brief review for a fading art. Phys Med Rehabil Clin N Am. 2018;29(3):519–27. https://doi.org/10.1016/j.pmr.2018.03.005.

    Article  PubMed  Google Scholar 

  83. Halpern D, Meelhuysen FE. Duration of relaxation after intramuscular neurolysis with phenol. JAMA. 1967;200(13):1152–4.

    Article  CAS  Google Scholar 

  84. Karri J, Zhang B, Li S. Phenol Neurolysis for Management of Focal Spasticity in the distal upper extremity. PM R. 2019;12:246–50. https://doi.org/10.1002/pmrj.12217.

    Article  PubMed  Google Scholar 

  85. Zafonte RD, Munin MC. Phenol and alcohol blocks for the treatment of spasticity. Phys Med Rehabil Clin N Am. 2001;12(4):817–32 vii.

    Article  CAS  Google Scholar 

  86. Elovic EP, Esquenazi A, Alter KE, Lin JL, Alfaro A, Kaelin DL. Chemodenervation and nerve blocks in the diagnosis and management of spasticity and muscle overactivity. PM R. 2009;1(9):842–51. https://doi.org/10.1016/j.pmrj.2009.08.001.

    Article  PubMed  Google Scholar 

  87. Ghai A, Sangwan SS, Hooda S, Garg N, Kundu ZS, Gupta T. Evaluation of interadductor approach in neurolytic blockade of obturator nerve in spastic patients. Saudi J Anaesth. 2013;7(4):420–6. https://doi.org/10.4103/1658-354X.121074.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Gunduz S, Kalyon TA, Dursun H, Mohur H, Bilgic F. Peripheral nerve block with phenol to treat spasticity in spinal cord injured patients. Paraplegia. 1992;30(11):808–11. https://doi.org/10.1038/sc.1992.156.

    Article  PubMed  CAS  Google Scholar 

  89. Kolaski K, Ajizian SJ, Passmore L, Pasutharnchat N, Koman LA, Smith BP. Safety profile of multilevel chemical denervation procedures using phenol or botulinum toxin or both in a pediatric population. Am J Phys Med Rehabil. 2008;87(7):556–66. https://doi.org/10.1097/PHM.0b013e31817c115b.

    Article  PubMed  Google Scholar 

  90. Kirshblum S. Treatment alternatives for spinal cord injury related spasticity. J Spinal Cord Med. 1999;22(3):199–217. https://doi.org/10.1080/10790268.1999.11719570.

    Article  PubMed  CAS  Google Scholar 

  91. Alter KE, Lin JL. Ultrasound-guided chemodenervation procedures Text and Atlas. In: Alter KE, Hallett M, Karp B, Lungu C, editors. DemosMedical; 2012.

    Google Scholar 

  92. Gracies JM, Nance P, Elovic E, McGuire J, Simpson DM. Traditional pharmacological treatments for spasticity. Part II: general and regional treatments. Muscle Nerve Suppl. 1997;6:S92–120.

    Article  CAS  Google Scholar 

  93. McIntyre A, Mays R, Mehta S, Janzen S, Townson A, Hsieh J, et al. Examining the effectiveness of intrathecal baclofen on spasticity in individuals with chronic spinal cord injury: a systematic review. J Spinal Cord Med. 2014;37(1):11–8. https://doi.org/10.1179/2045772313Y.0000000102.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Nance P, Schryvers O, Schmidt B, Dubo H, Loveridge B, Fewer D. Intrathecal baclofen therapy for adults with spinal spasticity: therapeutic efficacy and effect on hospital admissions. Can J Neurol Sci. 1995;22(1):22–9. https://doi.org/10.1017/s0317167100040452.

    Article  PubMed  CAS  Google Scholar 

  95. McCormick ZL, Chu SK, Binler D, Neudorf D, Mathur SN, Lee J, et al. Intrathecal versus oral baclofen: a matched cohort study of spasticity, pain, sleep, fatigue, and quality of life. PM R. 2016;8(6):553–62. https://doi.org/10.1016/j.pmrj.2015.10.005.

    Article  PubMed  Google Scholar 

  96. Saulino M. Intrathecal therapies. Phys Med Rehabil Clin N Am. 2018;29(3):537–51. https://doi.org/10.1016/j.pmr.2018.04.001.

    Article  PubMed  Google Scholar 

  97. Boster AL, Adair RL, Gooch JL, Nelson ME, Toomer A, Urquidez J, et al. Best practices for intrathecal baclofen therapy: dosing and long-term management. Neuromodulation. 2016;19(6):623–31. https://doi.org/10.1111/ner.12388.

    Article  PubMed  Google Scholar 

  98. • Saulino M, Anderson DJ, Doble J, Farid R, Gul F, Konrad P, et al. Best practices for intrathecal baclofen therapy: troubleshooting. Neuromodulation. 2016;19(6):632–41. https://doi.org/10.1111/ner.12467. This consensus statement reviewed 263 peer- reviewed papers and discussed recommended intrathecal baclofen troubleshooting management strategies.

    Article  PubMed  Google Scholar 

  99. Abel NA, Smith RA. Intrathecal baclofen for treatment of intractable spinal spasticity. Arch Phys Med Rehabil. 1994;75(1):54–8.

    Article  CAS  Google Scholar 

  100. Coffey RJ, Edgar TS, Francisco GE, Graziani V, Meythaler JM, Ridgely PM, et al. Abrupt withdrawal from intrathecal baclofen: recognition and management of a potentially life-threatening syndrome. Arch Phys Med Rehabil. 2002;83(6):735–41. https://doi.org/10.1053/apmr.2002.32820.

    Article  PubMed  Google Scholar 

  101. Turner MS. Assessing syndromes of catheter malfunction with SynchroMed infusion systems: the value of spiral computed tomography with contrast injection. PM R. 2010;2(8):757–66. https://doi.org/10.1016/j.pmrj.2010.05.011.

    Article  PubMed  Google Scholar 

  102. Medtronic. Continuing Therapy with SynchroMed II 2020. https://www.medtronic.com/us-en/patients/treatments-therapies/drug-pump-chronic-pain/living-with-therapy/pump-replacement.html.

  103. Barolat G. Surgical management of spasticity and spasms in spinal cord injury: an overview. J Am Paraplegia Soc. 1988;11(1):9–13. https://doi.org/10.1080/01952307.1988.11735787.

    Article  PubMed  CAS  Google Scholar 

  104. Reynolds RM, Morton RP, Walker ML, Massagli TL, Browd SR. Role of dorsal rhizotomy in spinal cord injury-induced spasticity. J Neurosurg Pediatr. 2014;14(3):266–70. https://doi.org/10.3171/2014.5.PEDS13459.

    Article  PubMed  Google Scholar 

  105. Hawley LA, Ketchum JM, Morey C, Collins K, Charlifue S. Cannabis use in individuals with spinal cord injury or moderate to severe traumatic brain injury in Colorado. Arch Phys Med Rehabil. 2018;99(8):1584–90. https://doi.org/10.1016/j.apmr.2018.02.003.

    Article  PubMed  Google Scholar 

  106. Rocha FC, Dos Santos Junior JG, Stefano SC, da Silveira DX. Systematic review of the literature on clinical and experimental trials on the antitumor effects of cannabinoids in gliomas. J Neuro-Oncol. 2014;116(1):11–24. https://doi.org/10.1007/s11060-013-1277-1.

    Article  CAS  Google Scholar 

  107. Grao-Castellote C, Torralba-Collados F, Gonzalez LM, Giner-Pascual M. Delta-9-tetrahydrocannabinol-cannabidiol in the treatment of spasticity in chronic spinal cord injury: a clinical experience. Rev Neurol. 2017;65(7):295–302.

    PubMed  CAS  Google Scholar 

  108. Raghavan P, Lu Y, Mirchandani M, Stecco A. Human recombinant hyaluronidase injections for upper limb muscle stiffness in individuals with cerebral injury: a case series. EBioMedicine. 2016;9:306–13. https://doi.org/10.1016/j.ebiom.2016.05.014.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Korzhova J, Sinitsyn D, Chervyakov A, Poydasheva A, Zakharova M, Suponeva N, et al. Transcranial and spinal cord magnetic stimulation in treatment of spasticity: a literature review and meta-analysis. Eur J Phys Rehabil Med. 2018;54(1):75–84. https://doi.org/10.23736/S1973-9087.16.04433-6.

    Article  PubMed  Google Scholar 

  110. Benito J, Kumru H, Murillo N, Costa U, Medina J, Tormos JM, et al. Motor and gait improvement in patients with incomplete spinal cord injury induced by high-frequency repetitive transcranial magnetic stimulation. Top Spinal Cord Inj Rehabil. 2012;18(2):106–12. https://doi.org/10.1310/sci1802-106.

    Article  PubMed  CAS  Google Scholar 

  111. Kumru H, Murillo N, Samso JV, Valls-Sole J, Edwards D, Pelayo R, et al. Reduction of spasticity with repetitive transcranial magnetic stimulation in patients with spinal cord injury. Neurorehabil Neural Repair. 2010;24(5):435–41. https://doi.org/10.1177/1545968309356095.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Gharooni AA, Nair KPS, Hawkins D, Scivill I, Hind D, Hariharan R. Intermittent theta-burst stimulation for upper-limb dysfunction and spasticity in spinal cord injury: a single-blind randomized feasibility study. Spinal Cord. 2018;56(8):762–8. https://doi.org/10.1038/s41393-018-0152-5.

    Article  PubMed  Google Scholar 

  113. Nardone R, Langthaler PB, Orioli A, Holler P, Holler Y, Frey VN, et al. Effects of intermittent theta burst stimulation on spasticity after spinal cord injury. Restor Neurol Neurosci. 2017;35(3):287–94. https://doi.org/10.3233/RNN-160701.

    Article  PubMed  Google Scholar 

  114. Nagel SJ, Wilson S, Johnson MD, Machado A, Frizon L, Chardon MK, et al. Spinal cord stimulation for spasticity: historical approaches, current status, and future directions. Neuromodulation. 2017;20(4):307–21. https://doi.org/10.1111/ner.12591.

    Article  PubMed  Google Scholar 

  115. Hofstoetter US, Freundl B, Danner SM, Krenn MJ, Mayr W, Binder H, et al. Transcutaneous spinal cord stimulation induces temporary attenuation of spasticity in individuals with spinal cord injury. J Neurotrauma. 2020;37(3):481–93. https://doi.org/10.1089/neu.2019.6588.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice J. Hon.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Spinal Cord Injury Rehabilitation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hon, A.J., Kraus, P. Spasticity Management After Spinal Cord Injury. Curr Phys Med Rehabil Rep 8, 159–171 (2020). https://doi.org/10.1007/s40141-020-00280-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40141-020-00280-6

Keywords

Navigation