Walking after Spinal Cord Injury: Current Clinical Approaches and Future Directions

Abstract

Purpose of Review

Walking is a major priority after spinal cord injury (SCI). This review aims to inform clinicians of key considerations, available research to assist with prognosis, and current and future rehabilitation strategies to promote walking.

Recent Findings

There are many benefits to walking, although not all aspects may be advantageous. Several models have been developed to assist with prognostication. Gait training and locomotor training (overground or body weight supported treadmill training) are common rehabilitation approaches to promote walking in this population. Walking after SCI is also a significant focus of ongoing research with current studies investigating the impact of exoskeletons and neuromodulation through transcranial direct current stimulation, spinal stimulation, and intermittent hypoxia.

Summary

Walking is a major priority for many people after SCI. Clinicians should be aware of the numerous options for prescribing ambulation training as well as the risks and benefits.

This is a preview of subscription content, log in to check access.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Anderson KD. Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma. 2004;21(10):1371–83.

    PubMed  Google Scholar 

  2. 2.

    Simpson LA, Eng JJ, Hsieh JT. Wolfe and the Spinal Cord Injury Rehabilitation Evidence (SCIRE) research team DL. The health and life priorities of individuals with spinal cord injury: a systematic review. J Neurotrauma. 2012;29(8):1548–55.

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Scivoletto G, Tamburella F, Laurenza L, Torre M, Molinari M. Who is going to walk? A review of the factors influencing walking recovery after spinal cord injury. Front Hum Neurosci. 2014;8:141.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Ditunno PL, Patrick M, Stineman M, Ditunno JF. Who wants to walk? Preferences for recovery after SCI: a longitudinal and cross-sectional study. Spinal Cord. 2008;46(7):500–6.

    CAS  PubMed  Google Scholar 

  5. 5.

    Le Fort M, Espagnacq M, Perrouin-Verbe B, Ravaud JF. Risk analyses of pressure ulcer in tetraplegic spinal cord-injured persons: a French long-term survey. Arch Phys Med Rehabil. 2017;98(9):1782–91.

    PubMed  Google Scholar 

  6. 6.

    Miller LE, Anderson LH. Association of ambulatory ability on complications and medical costs in patients with traumatic spinal cord injury: a decision-analytic model. Cureus. 2019;11(8).

  7. 7.

    Karimi MT. Evidence-based evaluation of physiological effects of standing and walking in individuals with spinal cord injury. Iranian J Med Sci. 2011;36(4):242–53.

    Google Scholar 

  8. 8.

    Jain NB, Higgins LD, Katz JN, Garshick E. Association of shoulder pain with the use of mobility devices in persons with chronic spinal cord injury. PM&R. 2010;2(10):896–900.

    Google Scholar 

  9. 9.

    Saunders LL, Krause JS, DiPiro ND, Kraft S, Brotherton S. Ambulation and complications related to assistive devices after spinal cord injury. J Spinal Cord Med. 2013;36(6):652–9.

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Saunders L, DiPiro N, Krause J, Brotherton S, Kraft S. Risk of fall-related injuries among ambulatory participants with spinal cord injury. Topics Spinal Cord Injury Rehabil. 2013;19(4):259–66.

    Google Scholar 

  11. 11.

    Jørgensen V, Forslund EB, Franzén E, Opheim A, Seiger Å, Ståhle A, et al. Factors associated with recurrent falls in individuals with traumatic spinal cord injury: a multicenter study. Arch Phys Med Rehabil. 2016;97(11):1908–16.

    PubMed  Google Scholar 

  12. 12.

    Brotherton SS, Saunders LL, Krause JS, Morrisette DC. Association between reliance on devices and people for walking and ability to walk community distances among persons with spinal cord injury. J Spinal Cord Med. 2012;35(3):156–61.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Bateni H, Maki BE. Assistive devices for balance and mobility: benefits, demands, and adverse consequences. Arch Phys Med Rehabil. 2005;86(1):134–45.

    PubMed  Google Scholar 

  14. 14.

    Saensook W, Phonthee S, Srisim K, Mato L, Wattanapan P, Amatachaya S. Ambulatory assistive devices and walking performance in patients with incomplete spinal cord injury. Spinal Cord. 2014;52(3):216–9.

    CAS  PubMed  Google Scholar 

  15. 15.

    Van Hedel HJ. Gait speed in relation to categories of functional ambulation after spinal cord injury. Neurorehabil Neural Repair. 2009;23(4):343–50.

    PubMed  Google Scholar 

  16. 16.

    Hussey RW, Stauffer ES. Spinal cord injury: requirements for ambulation. Arch Phys Med Rehabil. 1973;54(12):544–7.

    CAS  PubMed  Google Scholar 

  17. 17.

    Lapointe R, Lajoie Y, Serresse O, Barbeau H. Functional community ambulation requirements in incomplete spinal cord injured subjects. Spinal Cord. 2001;39(6):327–35.

    CAS  PubMed  Google Scholar 

  18. 18.

    Hasegawa T, Uchiyama Y, Uemura K, Harada Y, Sugiyama M, Tanaka H. Physical impairment and walking function required for community ambulation in patients with cervical incomplete spinal cord injury. Spinal Cord. 2014;52(5):396–9.

    CAS  PubMed  Google Scholar 

  19. 19.

    Bolliger M, Blight AR, Field-Fote EC, Musselman K, Rossignol S, Barthélemy D, et al. Lower extremity outcome measures: considerations for clinical trials in spinal cord injury. Spinal Cord. 2018;56(7):628–42.

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Burns SP, Golding DG, Rolle WA, Graziani V, Ditunno JF. Recovery of ambulation in motor-incomplete tetraplegia. Arch Phys Med Rehabil. 1997;78(11):1169–72.

    CAS  PubMed  Google Scholar 

  21. 21.

    Oleson CV, Marino RJ, Leiby BE, Ditunno JF. Influence of age alone, and age combined with pinprick, on recovery of walking function in motor complete, sensory incomplete spinal cord injury. Arch Phys Med Rehabil. 2016;97(10):1635–41.

    PubMed  Google Scholar 

  22. 22.

    Crozier KS, Cheng LL, Graziani V, Zorn G, Herbison G, Ditunno JF. Spinal cord injury: prognosis for ambulation based on quadriceps recovery. Spinal Cord. 1992;30(11):762–7.

    CAS  Google Scholar 

  23. 23.

    Katoh S, El Masry WS. Motor recovery of patients presenting with motor paralysis and sensory sparing following cervical spinal cord injuries. Spinal Cord. 1995;33(9):506–9.

    CAS  Google Scholar 

  24. 24.

    Oleson CV, Burns AS, Ditunno JF, Geisler FH, Coleman WP. Prognostic value of pinprick preservation in motor complete, sensory incomplete spinal cord injury. Arch Phys Med Rehabil. 2005;86(5):988–92.

    PubMed  Google Scholar 

  25. 25.

    Ko HY, Ditunno JF, Graziani V, Little JW. The pattern of reflex recovery during spinal shock. Spinal Cord. 1999;37(6):402–9.

    CAS  PubMed  Google Scholar 

  26. 26.

    Weinstein D, Kon HY, Graziani V, Ditunno J Jr. Prognostic significance of the delayed plantar reflex following spinal cord injury. J Spinal Cord Med. 1997;20(2):207–11.

    CAS  PubMed  Google Scholar 

  27. 27.

    Kay ED, Deutsch A, Wuermser LA. Predicting walking at discharge from inpatient rehabilitation after a traumatic spinal cord injury. Arch Phys Med Rehabil. 2007;88(6):745–50.

    PubMed  Google Scholar 

  28. 28.

    Van Middendorp JJ, Hosman AJ, Donders AR, Pouw MH, Ditunno JF Jr, Curt A, et al. A clinical prediction rule for ambulation outcomes after traumatic spinal cord injury: a longitudinal cohort study. Lancet. 2011;377(9770):1004–10.

    PubMed  Google Scholar 

  29. 29.

    • Hicks KE, Zhao Y, Fallah N, Rivers CS, Noonan VK, Plashkes T, et al. A simplified clinical prediction rule for prognosticating independent walking after spinal cord injury: a prospective study from a Canadian multicenter spinal cord injury registry. Spine J. 2017;17(10):1383–92. Recent ambulation prediction rule for walking after SCI that incorporates a previous model and also proposes a simplified version.

    PubMed  Google Scholar 

  30. 30.

    Zörner B, Blanckenhorn WU, Dietz V, EM-SCI study group, Curt A. Clinical algorithm for improved prediction of ambulation and patient stratification after incomplete spinal cord injury. J Neurotrauma. 2010;27(1):241–52.

    PubMed  Google Scholar 

  31. 31.

    Malla R. External validation study of a clinical prediction rule for ambulation outcomes after traumatic spinal cord injury (Doctoral dissertation, The University of Texas School of Public Health).

  32. 32.

    Van Silfhout L, Peters AE, Graco M, Schembri R, Nunn AK, Berlowitz DJ. Validation of the Dutch clinical prediction rule for ambulation outcomes in an inpatient setting following traumatic spinal cord injury. Spinal Cord. 2016;54(8):614–8.

    PubMed  Google Scholar 

  33. 33.

    •• Phan P, Budhram B, Zhang Q, Rivers CS, Noonan VK, Plashkes T, et al. Highlighting discrepancies in walking prediction accuracy for patients with traumatic spinal cord injury: an evaluation of validated prediction models using a Canadian Multicenter Spinal Cord Injury Registry. Spine J. 2019;19(4):703–10. Recent study challenging the predictive accuracy of two previously validated prediction models for ambulation after SCI.

    PubMed  Google Scholar 

  34. 34.

    Rigot S, Worobey L, Boninger ML. Gait training in acute spinal cord injury rehabilitation—utilization and outcomes among nonambulatory individuals: findings from the SCIRehab project. Arch Phys Med Rehabil. 2018;99(8):1591–8.

    PubMed  Google Scholar 

  35. 35.

    Riggins MS, Kankipati P, Oyster ML, Cooper RA, Boninger ML. The relationship between quality of life and change in mobility 1 year postinjury in individuals with spinal cord injury. Arch Phys Med Rehabil. 2011;92(7):1027–33.

    PubMed  Google Scholar 

  36. 36.

    Hiremath SV, Hogaboom NS, Roscher MR, Worobey LA, Oyster ML, Boninger ML. Longitudinal prediction of quality-of-life scores and locomotion in individuals with traumatic spinal cord injury. Arch Phys Med Rehabil. 2017;98(12):2385–92.

    PubMed  Google Scholar 

  37. 37.

    Lavis TD, Codamon L. Lower limb orthoses for persons with spinal cord injury. In: Webster JB, Murphy DP, editors. Atlas of Orthoses. 5th ed. Philadelphia: Elsevier, Inc; 2019.

    Google Scholar 

  38. 38.

    Kim CM, Eng JJ, Whittaker MW. Effects of a simple functional electric system and/or a hinged ankle-foot orthosis on walking in persons with incomplete spinal cord injury. Arch Phys Med Rehabil. 2004;85:1718–23.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Edgerton VR, Tillakaratne NJ, Bigbee AJ, de Leon RD, Roy RR. Plasticity of the spinal neural circuitry after injury. Annu Rev Neurosci. 2004;27:145–67.

    CAS  PubMed  Google Scholar 

  40. 40.

    Wolpaw JR, Tennissen AM. Activity-dependent spinal cord plasticity in health and disease. Annu Rev Neurosci. 2001;24(1):807–43.

    CAS  PubMed  Google Scholar 

  41. 41.

    Grillner S. Control of locomotion in bipeds, tetrapods, and fish. In: Brooks VB, editor. Handbook of physiology-the nervous system, II.

  42. 42.

    Grillner S. The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci. 2003;4(7):573–86.

    CAS  PubMed  Google Scholar 

  43. 43.

    Dietz V, Harkema SJ. Locomotor activity in spinal cord-injured persons. J Appl Physiol. 2004;96(5):1954–60.

    CAS  PubMed  Google Scholar 

  44. 44.

    Lovely RG, Gregor RJ, Roy RR, Edgerton VR. Effects of training on the recovery of full-weight-bearing stepping in the adult spinal cat. Exp Neurol. 1986;92(2):421–35.

    CAS  PubMed  Google Scholar 

  45. 45.

    Barbeau H, Rossignol S. Recovery of locomotion after chronic spinalization in the adult cat. Brain Res. 1987;412(1):84–95.

    CAS  PubMed  Google Scholar 

  46. 46.

    De Leon RD, Hodgson JA, Roy RR, Edgerton VR. Locomotor capacity attributable to step training versus spontaneous recovery after spinalization in adult cats. J Neurophysiol. 1998;79(3):1329–40.

    PubMed  Google Scholar 

  47. 47.

    Field-Fote EC, Nieves L, Hartigan C. Advanced mobility and strategies to promote walking function after spinal cord injury. In: Kirshblum S, Lin VW, editors. Spinal cord medicine. 3rd ed. New York: Demos Medical Publishing; 2018.

    Google Scholar 

  48. 48.

    Harkema SJ, Hillyer J, Schmidt-Read M, Ardolino E, Sisto SA, Behrman AL. Locomotor training: as a treatment of spinal cord injury and in the progression of neurologic rehabilitation. Arch Phys Med Rehabil. 2012;93(9):1588–97.

    PubMed  Google Scholar 

  49. 49.

    Wernig A, Müller S, Nanassy A, Cagol E. Laufband therapy based on ‘rules of spinal locomotion’ is effective in spinal cord injured persons. Eur J Neurosci. 1995;7(4):823–9.

    CAS  PubMed  Google Scholar 

  50. 50.

    Alexeeva N, Sames C, Jacobs PL, Hobday L, DiStasio MM, Mitchell SA, et al. Comparison of training methods to improve walking in persons with chronic spinal cord injury: a randomized clinical trial. J Spinal Cord Med. 2011;34(4):362–79.

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Lucareli PR, Lima MO, Lima FP, De Almeida JG, Brech GC, Greve JD. Gait analysis following treadmill training with body weight support versus conventional physical therapy: a prospective randomized controlled single blind study. Spinal Cord. 2011;49(9):1001–7.

    CAS  PubMed  Google Scholar 

  52. 52.

    Harkema SJ, Schmidt-Read M, Lorenz DJ, Edgerton VR, Behrman AL. Balance and ambulation improvements in individuals with chronic incomplete spinal cord injury using locomotor training–based rehabilitation. Arch Phys Med Rehabil. 2012;93(9):1508–17.

    PubMed  Google Scholar 

  53. 53.

    Yang JF, Musselman KE, Livingstone D, Brunton K, Hendricks G, Hill D, et al. Repetitive mass practice or focused precise practice for retraining walking after incomplete spinal cord injury? A pilot randomized clinical trial. Neurorehabil Neural Repair. 2014;28(4):314–24.

    PubMed  Google Scholar 

  54. 54.

    Musselman KE, Fouad K, Misiaszek JE, Yang JF. Training of walking skills overground and on the treadmill: case series on individuals with incomplete spinal cord injury. Phys Ther. 2009;89(6):601–11.

    PubMed  Google Scholar 

  55. 55.

    Protas EJ, Holmes SA, Qureshy H, Johnson A, Lee D, Sherwood AM. Supported treadmill ambulation training after spinal cord injury: a pilot study. Arch Phys Med Rehabil. 2001;82(6):825–31.

    CAS  PubMed  Google Scholar 

  56. 56.

    Field-Fote EC, Roach KE. Influence of a locomotor training approach on walking speed and distance in people with chronic spinal cord injury: a randomized clinical trial. Phys Ther. 2011;91(1):48–60.

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Field-Fote EC, Tepavac D. Improved intralimb coordination in people with incomplete spinal cord injury following training with body weight support and electrical stimulation. Phys Ther. 2002;82(7):707–15.

    PubMed  Google Scholar 

  58. 58.

    Jayaraman A, Shah P, Gregory C, Bowden M, Stevens J, Bishop M, et al. Locomotor training and muscle function after incomplete spinal cord injury: case series. J Spinal Cord Med. 2008;31(2):185–93.

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Dobkin B, Apple D, Barbeau H, Basso M, Behrman A, Deforge D, et al. Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI. Neurology. 2006;66(4):484–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Manella KJ, Torres J, Field-Fote EC. Restoration of walking function in an individual with chronic complete (AIS A) spinal cord injury. J Rehabil Med. 2010;42(8):795–8.

    PubMed  Google Scholar 

  61. 61.

    Spiess MR, Jaramillo JP, Behrman AL, Teraoka JK, Patten C. Unexpected recovery after robotic locomotor training at physiologic stepping speed: a single-case design. Arch Phys Med Rehabil. 2012;93(8):1476–84.

    PubMed  Google Scholar 

  62. 62.

    Murillo N, Kumru H, Opisso E, Padullés JM, Medina J, Vidal J, et al. Recovery of assisted overground stepping in a patient with chronic motor complete spinal cord injury: a case report. NeuroRehabilitation. 2012;31(4):401–7.

    PubMed  Google Scholar 

  63. 63.

    Dobkin BH, Harkema S, Requejo P, Edgerton VR. Modulation of locomotor-like EMG activity in subjects with complete and incomplete spinal cord injury. J Neurol Rehabil. 1995;9(4):183–90.

    CAS  PubMed  Google Scholar 

  64. 64.

    Oh DW, Park HJ. One-year follow-up of the effects of community-based ambulation training for ambulatory patients with incomplete spinal cord injury: a case series. Neurorehabilitation. 2013;32(2):425–32.

    PubMed  Google Scholar 

  65. 65.

    Pramodhyakul N, Amatachaya P, Sooknuan T, et al. Visuotemporal cues clinically improved walking ability of ambulatory patients with spinal cord injury within 5 days. J Spinal Cord Med. 2016;8:1–7.

    Google Scholar 

  66. 66.

    Senthilvelkumar T, Magimairaj H, Fletcher J, Tharion G, George J. Comparison of body weight-supported treadmill training versus body weight-supported overground training in people with incomplete tetraplegia: a pilot randomized trial. Clin Rehabil. 2015;29(1):42–9.

    PubMed  Google Scholar 

  67. 67.

    Mehrholz J, Harvey LA, Thomas S, Elsner B. Is body-weight-supported treadmill training or robotic-assisted gait training superior to overground gait training and other forms of physiotherapy in people with spinal cord injury? A systematic review. Spinal Cord. 2017;55(8):722–9.

    CAS  PubMed  Google Scholar 

  68. 68.

    Hornby TG, Reisman DS, Ward IG, Scheets PL, Miller A, Haddad D, et al. Clinical practice guidelines to improve locomotor function following chronic stroke, incomplete spinal cord injury, and brain injury. J Neuro Phys Ther. 2020;44(1):49–100.

    Google Scholar 

  69. 69.

    Thrasher TA, Flett HM, Popovic MR. Gait training regimen for incomplete spinal cord injury using functional electrical stimulation. Spinal Cord. 2006;44:357–61.

    CAS  PubMed  Google Scholar 

  70. 70.

    Stein RB, Belanger M, Wheeler G, Wieler M, Popovic DB, Prochazka A, et al. Electrical systems for improving locomotion after incomplete spinal cord injury: an assessment. Arch Phys Med Rehabil. 1993;74:954–9.

    CAS  PubMed  Google Scholar 

  71. 71.

    Lam T, Tse C, Sproule S, Eng JJ, Sproule S. Lower limb rehabilitation following spinal cord injury. In: Eng JJ, Teasell RW, Miller WC, Wolfe DL, Townson AF, Hsieh JTC, Connolly SJ, Noonan VK, Loh E, Sproule S, McIntyre A, Querée M, editors. Spinal Cord Injury Rehabilitation Evidence. Version 6.0. Vancouver: 2019.

  72. 72.

    Field-Fote EC, Lindley SD, Sherman AL. Locomotor training approaches for individul as with spinal cord injury: a preliminary report of walking-related outcomes. J Neurol Phys Ther. 2005;29(3):127–37.

    PubMed  Google Scholar 

  73. 73.

    Field-Fote EC, Fluet GG, Schafer SD, Schneider EM, Smith R, Downey PA, et al. The spinal cord injury functional ambulation inventory (SCI-FAI). J Rehabil Med. 2001;33(4):177–81.

    CAS  PubMed  Google Scholar 

  74. 74.

    Martin R, Sadowsky C, Obst K, Meyer B, McDonald J. Functional electrical stimulation in spinal cord injury: from theory to practice. Top Spinal Cord Inj Rehabil. 2012;18(1):28–38.

    PubMed  Google Scholar 

  75. 75.

    Houghton P, Nussbaum E, Hoens A. Electrophysical agents – contraindications and precautions: an evidence-based approach to clinical decision making in physical therapy. Physiother Can. 2010;62(5):1–80.

    Google Scholar 

  76. 76.

    Hartkopp A, Murphy RJL, Mohr R, et al. Bone fracture during electrical stimulation of the quadriceps in a spinal cord injured subject. Arch Phys Med Rehabil. 1998;79:1133–6.

    CAS  PubMed  Google Scholar 

  77. 77.

    Wirz M, Dietz V, Esclarin A, Benito J, Mach O, Bastiaenen C, et al. Dose-response relationship of locomotor training in patients with spinal cord injury: preliminary results. Physiotherapy. 2015;101(Suppl 1):e1348.

    Google Scholar 

  78. 78.

    Sandler EB, Roach KE, Field-Fote EC. Dose-response outcomes associated with different forms of locomotor training in persons with chronic motor-incomplete spinal cord injury. J Neurotrauma. 2017;34:1903–8.

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Clinicaltrials.gov. (2020). Home - ClinicalTrials.gov . [online] Available at: https://clinicaltrials.gov/ [Accessed 19 Feb. 2020].

  80. 80.

    Aach M, Cruciger O, Sczesny-Kaiser M, Höffken O, Meindl RC, Tegenthoff M, et al. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Spine J. 2014;14(12):2847–53.

    PubMed  Google Scholar 

  81. 81.

    Birch N, Graham J, Priestley T, Heywood C, Sakel M, Gall A, et al. Results of the first interim analysis of the RAPPER II trial in patients with spinal cord injury: ambulation and functional exercise programs in the REX powered walking aid. J Neuroeng Rehabi. 2017;14(1):60.

    Google Scholar 

  82. 82.

    Kozlowski A, Bryce T, Dijkers M. Time and effort required by persons with spinal cord injury to learn to use a powered exoskeleton for assisted walking. Topics Spinal Cord Injury Rehabil. 2015;21(2):110–21.

    Google Scholar 

  83. 83.

    Esquenazi A, Talaty M, Packel A, Saulino M. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil. 2012;91(11):911–21.

    PubMed  Google Scholar 

  84. 84.

    Raithatha R, Carrico C, Powell ES, Westgate PM, Chelette II, Kenneth C, et al. Non-invasive brain stimulation and robot-assisted gait training after incomplete spinal cord injury: a randomized pilot study. NeuroRehabilitation. 2016;38(1):15–25.

    PubMed  Google Scholar 

  85. 85.

    Kumru H, Murillo N, Benito-Penalva J, Tormos JM, Vidal J. Transcranial direct current stimulation is not effective in the motor strength and gait recovery following motor incomplete spinal cord injury during Lokomat® gait training. Neurosci Lett. 2016;620:143–7.

    CAS  PubMed  Google Scholar 

  86. 86.

    Hofstoetter US, Krenn M, Danner SM, Hofer C, Kern H, McKay WB, et al. Augmentation of voluntary locomotor activity by transcutaneous spinal cord stimulation in motor-incomplete spinal cord-injured individuals. Artif Organs. 2015;39(10):E176–86.

    PubMed  Google Scholar 

  87. 87.

    Bendersky D, Yampolsky C. Is spinal cord stimulation safe? A review of its complications. World Neurosurg. 2014;82(6):1359–68.

    PubMed  Google Scholar 

  88. 88.

    Hoelzer BC, Bendel MA, Deer TR, Eldrige JS, Walega DR, Wang Z, et al. Spinal cord stimulator implant infection rates and risk factors: a multicenter retrospective study. Neuromodulation: Technol Neural Interf. 2017;20(6):558–62.

    Google Scholar 

  89. 89.

    Solinsky R, Specker-Sullivan L, Wexler A. Current barriers and ethical considerations for clinical implementation of epidural stimulation for functional improvement after spinal cord injury. J Spinal Cord Med. 2019;25:1–4.

    Google Scholar 

  90. 90.

    • Angeli CA, Boakye M, Morton RA, Vogt J, Benton K, Chen Y, et al. Recovery of over-ground walking after chronic motor complete spinal cord injury. N Engl J Med. 2018;379(13):1244–50. Recent study demonstrating ambulation recovery with EES and locomotor training.

    PubMed  Google Scholar 

  91. 91.

    Grahn PJ, Lavrov IA, Sayenko DG, Van Straaten MG, Gill ML, Strommen JA, Calvert JS, Drubach DI, Beck LA, Linde MB, Thoreson AR. Enabling task-specific volitional motor functions via spinal cord neuromodulation in a human with paraplegia. In Mayo Clinic proceedings 2017 (Vol. 92, no. 4, pp. 544-554). Elsevier.

  92. 92.

    Harkema S, Gerasimenko Y, Hodes J, Burdick J, Angeli C, Chen Y, et al. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet. 2011;377(9781):1938–47.

    PubMed  PubMed Central  Google Scholar 

  93. 93.

    • Gill ML, Grahn PJ, Calvert JS, Linde MB, Lavrov IA, Strommen JA, et al. Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat Med. 2018;24(11):1677–82. Recent study demonstrating ambulation recovery with EES and locomotor training.

    CAS  PubMed  Google Scholar 

  94. 94.

    • Wagner FB, Mignardot JB, Le Goff-Mignardot CG, Demesmaeker R, Komi S, Capogrosso M, et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature. 2018;563(7729):65–71. Recent study demonstrating ambulation recovery with EES and locomotor training.

    CAS  PubMed  Google Scholar 

  95. 95.

    Gerasimenko Y, Gorodnichev R, Moshonkina T, Sayenko D, Gad P, Edgerton VR. Transcutaneous electrical spinal-cord stimulation in humans. Ann Phys Rehabil Med. 2015;58(4):225–31.

    PubMed  PubMed Central  Google Scholar 

  96. 96.

    Hayes HB, Jayaraman A, Herrmann M, Mitchell GS, Rymer WZ, Trumbower RD. Daily intermittent hypoxia enhances walking after chronic spinal cord injury: a randomized trial. Neurology. 2014;82(2):104–13.

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    Navarrete-Opazo A, Alcayaga J, Sepúlveda O, Rojas E, Astudillo C. Repetitive intermittent hypoxia and locomotor training enhances walking function in incomplete spinal cord injury subjects: a randomized, triple-blind, placebo-controlled clinical trial. J Neurotrauma. 2017;34(9):1803–12.

    PubMed  Google Scholar 

  98. 98.

    Navarrete-Opazo A, Alcayaga JJ, Sepúlveda O, Varas G. Intermittent hypoxia and locomotor training enhances dynamic but not standing balance in patients with incomplete spinal cord injury. Arch Phys Med Rehabil. 2017;98(3):415–24.

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jayne Donovan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Spinal Cord Injury Rehabilitation

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Donovan, J., Snider, B., Miller, A. et al. Walking after Spinal Cord Injury: Current Clinical Approaches and Future Directions. Curr Phys Med Rehabil Rep (2020). https://doi.org/10.1007/s40141-020-00277-1

Download citation

Keywords

  • Spinal cord injury
  • Ambulation
  • Prognosis
  • Locomotor training
  • Gait training
  • Spinal stimulation