Skip to main content

Advertisement

Log in

Bone Loss and the Current Diagnosis of Osteoporosis and Risk of Fragility Fracture in Persons with Spinal Cord Injury

  • Spinal Cord Injury Rehabilitation (J Donovan, Section Editor)
  • Published:
Current Physical Medicine and Rehabilitation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The topics to be discussed in this article include bone loss in the regions of the lower extremity that are most prone to fracture, the risk factors for fracture, the diagnosis of osteoporosis in persons with spinal cord (SCI), the determination of the fracture threshold at the knee, and a brief discussion of future directions.

Recent Findings

Extensive cross-sectional studies, but a paucity of longitudinal studies, that describe the precipitous bone loss occurs during the acute phase of SCI that likely continues, albeit more gradually, over the lifetime. The distal femur (DF) and proximal tibia (PT) are the regions that are at the highest risk for fracture. The most predictive risk factor for fracture in persons with SCI is low areal bone mineral density (aBMD). Dual energy x-ray absorptiometry (DXA) is the most practical and accurate imaging method to assess DF and PT aBMD but, historically, insufficient standardization of this method has limited its clinical application.

Summary

The DF and PT regions should be assessed in persons with SCI using recently available DXA acquisition methodology and, once available, applying an appropriate reference dataset at the knee region collected from young, healthy able-bodied individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Frost HM. The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner. 1987;2(2):73–85.

    PubMed  CAS  Google Scholar 

  2. Isaacson J, Brotto M. Physiology of mechanotransduction: how do muscle and bone “talk” to one another? Clin Rev Bone Miner Metab. 2014;12(2):77–85. https://doi.org/10.1007/12018-013-9152-3.

    Article  PubMed  Google Scholar 

  3. Stewart AF, Adler M, Byers CM, Segre GV, Broadus AE. Calcium homeostasis in immobilization: an example of resorptive hypercalciuria. N Engl J Med. 1982;306(19):1136–40. https://doi.org/10.1056/NEJM198205133061903.

    Article  PubMed  CAS  Google Scholar 

  4. Uebelhart D, Hartmann D, Vuagnat H, Castanier M, Hachen HJ, Chantraine A. Early modifications of biochemical markers of bone metabolism in spinal cord injury patients. a preliminary study. Scand J Rehabil Med. 1994;26(4):197–202.

    PubMed  CAS  Google Scholar 

  5. Leblanc AD, Schneider VS, Evans HJ, Engelbretson DA, Krebs JM. Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res. 1990;5(8):843–50. https://doi.org/10.1002/jbmr.5650050807.

    Article  PubMed  CAS  Google Scholar 

  6. Recker R, Lappe J, Davies K, Heaney R. Characterization of perimenopausal bone loss: a prospective study. J Bone Miner Res. 2000;15(10):1965–73. https://doi.org/10.1359/jbmr.2000.15.10.1965.

    Article  PubMed  CAS  Google Scholar 

  7. Vico L, Collet P, Guignandon A, Lafage-Proust MH, Thomas T, Rehaillia M, et al. Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet. 2000;355(9215):1607–11.

    Article  CAS  Google Scholar 

  8. Biering-Sorensen F, Bohr HH, Schaadt OP. Longitudinal study of bone mineral content in the lumbar spine, the forearm and the lower extremities after spinal cord injury. Eur J Clin Investig. 1990;20(3):330–5.

    Article  CAS  Google Scholar 

  9. Wilmet E, Ismail AA, Heilporn A, Welraeds D, Bergmann P. Longitudinal study of the bone mineral content and of soft tissue composition after spinal cord section. Paraplegia. 1995;33(11):674–7. https://doi.org/10.1038/sc.1995.141.

    Article  PubMed  CAS  Google Scholar 

  10. Dauty M, Perrouin Verbe B, Maugars Y, Dubois C, Mathe JF. Supralesional and sublesional bone mineral density in spinal cord-injured patients. Bone. 2000;27(2):305–9.

    Article  CAS  Google Scholar 

  11. Bauman WA, Spungen AM, Wang J, Pierson RN Jr, Schwartz E. Continuous loss of bone during chronic immobilization: a monozygotic twin study. Osteoporos Int. 1999;10(2):123–7.

    Article  CAS  Google Scholar 

  12. • Cirnigliaro CM, Myslinski MJ, Asselin P, Hobson JC, Specht A, La Fountaine MF, et al. Progressive sublesional bone loss extends into the second decade after spinal cord injury. J Clin Densitom. 2019;22(2):185–94. https://doi.org/10.1016/j.jocd.2018.10.006This is a cross-sectional retrosepctive analysis demonstrating the rate of aBMD loss at the knee DF, PT. TH, and FN which was determined in persons with traumatic SCI who were stratified into subgroups based on TSI. The authors found sublesional bone loss after SCI was marked and occurred as an inverse function of TSI.

    Article  PubMed  Google Scholar 

  13. Garland DE, Adkins RH, Kushwaha V, Stewart C. Risk factors for osteoporosis at the knee in the spinal cord injury population. J Spinal Cord Med. 2004;27(3):202–6.

    Article  Google Scholar 

  14. Garland DEAH, Stewart CH. Fracture threshold and risk for osteoporosis and pathologic fractures in individuals with spinal cord injury. Top Spinal Cord Inj. 2005;11(1):61–9.

    Article  Google Scholar 

  15. Ragnarsson KT, Sell GH. Lower extremity fractures after spinal cord injury: a retrospective study. Arch Phys Med Rehabil. 1981;62(9):418–23.

    PubMed  CAS  Google Scholar 

  16. Ingram RR, Suman RK, Freeman PA. Lower limb fractures in the chronic spinal cord injured patient. Paraplegia. 1989;27(2):133–9. https://doi.org/10.1038/sc.1989.20.

    Article  PubMed  CAS  Google Scholar 

  17. Carbone LD, Chin AS, Burns SP, Svircev JN, Hoenig H, Heggeness M, et al. Morbidity following lower extremity fractures in men with spinal cord injury. Osteoporos Int. 2013;24(8):2261–7. https://doi.org/10.1007/s00198-013-2295-8.

    Article  PubMed  CAS  Google Scholar 

  18. Akhigbe T, Chin AS, Svircev JN, Hoenig H, Burns SP, Weaver FM, et al. A retrospective review of lower extremity fracture care in patients with spinal cord injury. J Spinal Cord Med. 2015;38(1):2–9. https://doi.org/10.1179/2045772313Y.0000000156.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Frey-Rindova P, de Bruin ED, Stussi E, Dambacher MA, Dietz V. Bone mineral density in upper and lower extremities during 12 months after spinal cord injury measured by peripheral quantitative computed tomography. Spinal Cord. 2000;38(1):26–32.

    Article  CAS  Google Scholar 

  20. Battaglino RA, Lazzari AA, Garshick E, Morse LR. Spinal cord injury-induced osteoporosis: pathogenesis and emerging therapies. Curr Osteoporos Rep. 2012;10(4):278–85. https://doi.org/10.1007/s11914-012-0117-0.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Biering-Sorensen F, Bohr H, Schaadt O. Bone mineral content of the lumbar spine and lower extremities years after spinal cord lesion. Paraplegia. 1988;26(5):293–301. https://doi.org/10.1038/sc.1988.44.

    Article  PubMed  CAS  Google Scholar 

  22. Doherty AL, Battaglino RA, Donovan J, Gagnon D, Lazzari AA, Garshick E, et al. Adiponectin is a candidate biomarker of lower extremity bone density in men with chronic spinal cord injury. J Bone Miner Res. 2014;29(1):251–9. https://doi.org/10.1002/jbmr.2020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lala D, Craven BC, Thabane L, Papaioannou A, Adachi JD, Popovic MR, et al. Exploring the determinants of fracture risk among individuals with spinal cord injury. Osteoporos Int. 2014;25(1):177–85. https://doi.org/10.1007/s00198-013-2419-1.

    Article  PubMed  CAS  Google Scholar 

  24. Warden SJ, Bennell KL, Matthews B, Brown DJ, McMeeken JM, Wark JD. Quantitative ultrasound assessment of acute bone loss following spinal cord injury: a longitudinal pilot study. Osteoporos Int. 2002;13(7):586–92. https://doi.org/10.1007/s001980200077.

    Article  PubMed  CAS  Google Scholar 

  25. Garland DE, Adkins RH, Stewart CA. Five-year longitudinal bone evaluations in individuals with chronic complete spinal cord injury. J Spinal Cord Med. 2008;31(5):543–50.

    Article  Google Scholar 

  26. Garland DE, Adkins RH, Stewart CA, Ashford R, Vigil D. Regional osteoporosis in women who have a complete spinal cord injury. J Bone Joint Surg Am. 2001;83-A(8):1195–200.

    Article  Google Scholar 

  27. Shields RK, Schlechte J, Dudley-Javoroski S, Zwart BD, Clark SD, Grant SA, et al. Bone mineral density after spinal cord injury: a reliable method for knee measurement. Arch Phys Med Rehabil. 2005;86(10):1969–73. https://doi.org/10.1016/j.apmr.2005.06.001.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zehnder Y, Luthi M, Michel D, Knecht H, Perrelet R, Neto I, et al. Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: a cross-sectional observational study in 100 paraplegic men. Osteoporos Int. 2004;15(3):180–9. https://doi.org/10.1007/s00198-003-1529-6.

    Article  PubMed  Google Scholar 

  29. Lobos S, Cooke A, Simonett G, Ho C, Boyd SK, Edwards WB. Assessment of bone mineral density at the distal femur and the proximal tibia by dual-energy X-ray absorptiometry in individuals with spinal cord injury: precision of protocol and relation to injury duration. J Clin Densitom. 2018;21(3):338–46. https://doi.org/10.1016/j.jocd.2017.05.006.

    Article  PubMed  Google Scholar 

  30. Battaglino RA, Sudhakar S, Lazzari AA, Garshick E, Zafonte R, Morse LR. Circulating sclerostin is elevated in short-term and reduced in long-term SCI. Bone. 2012;51(3):600–5. https://doi.org/10.1016/j.bone.2012.04.019.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Morse LR, Lazzari AA, Battaglino R, Stolzmann KL, Matthess KR, Gagnon DR, et al. Dual energy x-ray absorptiometry of the distal femur may be more reliable than the proximal tibia in spinal cord injury. Arch Phys Med Rehabil. 2009;90(5):827–31. https://doi.org/10.1016/j.apmr.2008.12.004.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bohr HH, Schaadt O. Mineral content of upper tibia assessed by dual photon densitometry. Acta Orthop Scand. 1987;58(5):557–9.

    Article  CAS  Google Scholar 

  33. Garland DE, Adkins RH, Scott M, Singh H, Massih M, Stewart C. Bone loss at the os calcis compared with bone loss at the knee in individuals with spinal cord injury. J Spinal Cord Med. 2004;27(3):207–11.

    Article  Google Scholar 

  34. Moreno C. Protocol for using dual photon absorptiometry software to measure BMD of distal femur and proximal tibia. Master’s thesis, McMaster University, Hamilton. 2001.

  35. Modlesky CM, Majumdar S, Narasimhan A, Dudley GA. Trabecular bone microarchitecture is deteriorated in men with spinal cord injury. J Bone Miner Res. 2004;19(1):48–55. https://doi.org/10.1359/JBMR.0301208.

    Article  PubMed  Google Scholar 

  36. Morse LR, Sudhakar S, Danilack V, Tun C, Lazzari A, Gagnon DR, et al. Association between sclerostin and bone density in chronic spinal cord injury. J Bone Miner Res. 2012;27(2):352–9. https://doi.org/10.1002/jbmr.546.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Alhava EM. Bone density measurements. Calcif Tissue Int. 1991;49(Suppl):S21–3.

    Article  Google Scholar 

  38. • Morse LR, Biering-Soerensen F, Carbone LD, Cervinka T, Cirnigliaro CM, Johnston TE, et al. Bone mineral density testing in spinal cord injury: 2019 ISCD official position. J Clin Densitom. 2019;22(4):554–66. https://doi.org/10.1016/j.jocd.2019.07.012The International Society of Clinical Densitometry convened a task force to establish Official Positions for bone density assessment by DXA in individuals with SCI of traumatic or nontraumatic etiology. A series of systematic reviews were developed to inform clinical care and guide the diagnosis of osteoporosis as well as fracture risk management of osteoporosis following SCI.

    Article  PubMed  Google Scholar 

  39. Bonnick SL. Osteoporosis in men and women. Clin Cornerstone. 2006;8(1):28–39.

    Article  Google Scholar 

  40. Baim S, Binkley N, Bilezikian JP, Kendler DL, Hans DB, Lewiecki EM, et al. Official positions of the International Society for Clinical Densitometry and executive summary of the 2007 ISCD position development conference. J Clin Densitom. 2008;11(1):75–91. https://doi.org/10.1016/j.jocd.2007.12.007.

    Article  PubMed  Google Scholar 

  41. Bauman WA, Schwartz E, Song IS, Kirshblum S, Cirnigliaro C, Morrison N, et al. Dual-energy X-ray absorptiometry overestimates bone mineral density of the lumbar spine in persons with spinal cord injury. Spinal Cord. 2009;47(8):628–33. https://doi.org/10.1038/sc.2008.169.

    Article  PubMed  CAS  Google Scholar 

  42. Bauman WA, Kirshblum S, Cirnigliaro C, Forrest GF, Spungen AM. Underestimation of bone loss of the spine with posterior-anterior dual-energy X-ray absorptiometry in patients with spinal cord injury. J Spinal Cord Med. 2010;33(3):214–20.

    Article  Google Scholar 

  43. Jaovisidha S, Sartoris DJ, Martin EM, De Maeseneer M, Szollar SM, Deftos LJ. Influence of spondylopathy on bone densitometry using dual energy X-ray absorptiometry. Calcif Tissue Int. 1997;60(5):424–9. https://doi.org/10.1007/s002239900257.

    Article  PubMed  CAS  Google Scholar 

  44. Lazo MG, Shirazi P, Sam M, Giobbie-Hurder A, Blacconiere MJ, Muppidi M. Osteoporosis and risk of fracture in men with spinal cord injury. Spinal Cord. 2001;39(4):208–14. https://doi.org/10.1038/sj.sc.3101139.

    Article  PubMed  CAS  Google Scholar 

  45. • Cirnigliaro CM, Parrott JS, Myslinski MJ, Asselin P, Lombard AT, La Fountaine MF, et al. Relationships between T-scores at the hip and bone mineral density at the distal femur and proximal tibia in persons with spinal cord injury. J Spinal Cord Med. 2019:1–11. https://doi.org/10.1080/10790268.2019.1669957The purpose of this cross-sectional investigation was to identifyTscore values at the TH and FN that correspond to the cutoff value of < 0.60 g/cm2for heightened risk of fracture at the DF and PT. The DF and PT cutoff value for aBMD of 0.60 g/cm(2) was a moderate predictor ofTscore values at the TH and FN, with considerable inaccuracies outside the clinically acceptable limits of agreement.

  46. Baim S, Wilson CR, Lewiecki EM, Luckey MM, Downs RW Jr, Lentle BC. Precision assessment and radiation safety for dual-energy X-ray absorptiometry: position paper of the International Society for Clinical Densitometry. J Clin Densitom. 2005;8(4):371–8.

    Article  Google Scholar 

  47. Bakkum AJ, Janssen TW, Rolf MP, Roos JC, Burcksen J, Knol DL, et al. A reliable method for measuring proximal tibia and distal femur bone mineral density using dual-energy X-ray absorptiometry. Med Eng Phys. 2014;36(3):387–90. https://doi.org/10.1016/j.medengphy.2013.08.010.

    Article  PubMed  Google Scholar 

  48. Peppler WT, Kim WJ, Ethans K, Cowley KC. Precision of dual-energy X-ray absorptiometry of the knee and heel: methodology and implications for research to reduce bone mineral loss after spinal cord injury. Spinal Cord. 2016;55:483–8. https://doi.org/10.1038/sc.2016.170.

    Article  PubMed  Google Scholar 

  49. McPherson JG, Edwards WB, Prasad A, Troy KL, Griffith JW, Schnitzer TJ. Dual energy X-ray absorptiometry of the knee in spinal cord injury: methodology and correlation with quantitative computed tomography. Spinal Cord. 2014;52(11):821–5. https://doi.org/10.1038/sc.2014.122.

    Article  PubMed  CAS  Google Scholar 

  50. Edwards WB, Schnitzer TJ, Troy KL. Bone mineral and stiffness loss at the distal femur and proximal tibia in acute spinal cord injury. Osteoporos Int. 2014;25(3):1005–15. https://doi.org/10.1007/s00198-013-2557-5.

    Article  PubMed  CAS  Google Scholar 

  51. Murphy E, Bresnihan B, FitzGerald O. Validated measurement of periarticular bone mineral density at the knee joint by dual energy x ray absorptiometry. Ann Rheum Dis. 2001;60(1):8–13.

    Article  CAS  Google Scholar 

  52. Li MG, Nilsson KG, Nivbrant B. Decreased precision for BMD measurements in the prosthetic knee using a non-knee-specific software. J Clin Densitom. 2004;7(3):319–25.

    Article  Google Scholar 

  53. Tan CO, Battaglino RA, Doherty AL, Gupta R, Lazzari AA, Garshick E, et al. Adiponectin is associated with bone strength and fracture history in paralyzed men with spinal cord injury. Osteoporos Int. 2014;25(11):2599–607. https://doi.org/10.1007/s00198-014-2786-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Bauman WA, Cirnigliaro CM, La Fountaine MF, Martinez L, Kirshblum SC, Spungen AM. Zoledronic acid administration failed to prevent bone loss at the knee in persons with acute spinal cord injury: an observational cohort study. J Bone Miner Metab. 2015;33(4):410–21. https://doi.org/10.1007/s00774-014-0602-x.

    Article  PubMed  CAS  Google Scholar 

  55. Schousboe JT, Tanner SB, Leslie WD. Definition of osteoporosis by bone density criteria in men: effect of using female instead of male young reference data depends on skeletal site and densitometer manufacturer. J Clin Densitom. 2014;17(2):301–6. https://doi.org/10.1016/j.jocd.2013.09.008.

    Article  PubMed  Google Scholar 

  56. Watts NB, Leslie WD, Foldes AJ, Miller PD. 2013 International Society for Clinical Densitometry Position Development Conference: task force on normative databases. J Clin Densitom. 2013;16(4):472–81. https://doi.org/10.1016/j.jocd.2013.08.001.

    Article  PubMed  Google Scholar 

  57. Looker AC, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP, et al. Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int. 1998;8(5):468–89.

    Article  CAS  Google Scholar 

  58. Eser P, Frotzler A, Zehnder Y, Wick L, Knecht H, Denoth J, et al. Relationship between the duration of paralysis and bone structure: a pQCT study of spinal cord injured individuals. Bone. 2004;34(5):869–80. https://doi.org/10.1016/j.bone.2004.01.001.

    Article  PubMed  CAS  Google Scholar 

  59. Edwards WB, Simonian N, Troy KL, Schnitzer TJ. Reduction in torsional stiffness and strength at the proximal tibia as a function of time since spinal cord injury. J Bone Miner Res. 2015;30(8):1422–30. https://doi.org/10.1002/jbmr.2474.

    Article  PubMed  CAS  Google Scholar 

  60. Coupaud S, McLean AN, Allan DB. Role of peripheral quantitative computed tomography in identifying disuse osteoporosis in paraplegia. Skelet Radiol. 2009;38(10):989–95. https://doi.org/10.1007/s00256-009-0674-1.

    Article  Google Scholar 

  61. Wood DE, Dunkerley AL, Tromans AM. Results from bone mineral density scans in twenty-two complete lesion paraplegics. Spinal Cord. 2001;39(3):145–8. https://doi.org/10.1038/sj.sc.3101125.

    Article  PubMed  CAS  Google Scholar 

  62. Morse LR, Battaglino RA, Stolzmann KL, Hallett LD, Waddimba A, Gagnon D, et al. Osteoporotic fractures and hospitalization risk in chronic spinal cord injury. Osteoporos Int. 2009;20(3):385–92. https://doi.org/10.1007/s00198-008-0671-6.

    Article  PubMed  CAS  Google Scholar 

  63. Gifre L, Vidal J, Carrasco J, Portell E, Puig J, Monegal A, et al. Incidence of skeletal fractures after traumatic spinal cord injury: a 10-year follow-up study. Clin Rehabil. 2014;28(4):361–9. https://doi.org/10.1177/0269215513501905.

    Article  PubMed  Google Scholar 

  64. • Cervinka T, Lynch CL, Giangregorio L, Adachi JD, Papaioannou A, Thabane L, et al. Agreement between fragility fracture risk assessment algorithms as applied to adults with chronic spinal cord injury. Spinal Cord. 2017;55(11):985–93. https://doi.org/10.1038/sc.2017.65A cross-sectional study investigated the relationship between fracture risk stratification using fracture rtisk assessment tools (with and without BMD) and SCI-specific fracture threshold values in adults with SCI. The authors found that fracture risk estimates in persons with SCI vary considerably using multiple risk-assessment tools.

    Article  PubMed  CAS  Google Scholar 

  65. Morse LR, Nguyen N, Battaglino RA, Guarino AJ, Gagnon DR, Zafonte R, et al. Wheelchair use and lipophilic statin medications may influence bone loss in chronic spinal cord injury: findings from the FRASCI-bone loss study. Osteoporos Int. 2016;27(12):3503–11. https://doi.org/10.1007/s00198-016-3678-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Abderhalden L, Weaver FM, Bethel M, Demirtas H, Burns S, Svircev J, et al. Dual-energy X-ray absorptiometry and fracture prediction in patients with spinal cord injuries and disorders. Osteoporos Int. 2017;28(3):925–34. https://doi.org/10.1007/s00198-016-3841-y.

    Article  PubMed  CAS  Google Scholar 

  67. Abderhalden L, Weaver FM, Bethel M, Demirtas H, Burns S, Svircev J, et al. Dual-energy X-ray absorptiometry and fracture prediction in patients with spinal cord injuries and disorders. Osteoporos Int. 2016;28:1–10. https://doi.org/10.1007/s00198-016-3841-y.

    Article  Google Scholar 

  68. Vestergaard P, Krogh K, Rejnmark L, Mosekilde L. Fracture rates and risk factors for fractures in patients with spinal cord injury. Spinal Cord. 1998;36(11):790–6.

    Article  CAS  Google Scholar 

  69. Craven BC, Robertson LA, McGillivray CF, Adachi JD. Detection and treatment of sublesional osteoporosis among patients with chronic spinal cord injury: proposed paradigms. Topics Spinal Cord Injury Rehabil. 2009;14(4):1–22.

    Article  Google Scholar 

  70. Parsons KC, Lammertse DP. Rehabilitation in spinal cord disorders. 1. Epidemiology, prevention, and system of care of spinal cord disorders. Arch Phys Med Rehabil. 1991;72(4-S):S293–4.

    PubMed  CAS  Google Scholar 

  71. Freehafer AA. Limb fractures in patients with spinal cord injury. Arch Phys Med Rehabil. 1995;76(9):823–7.

    Article  CAS  Google Scholar 

  72. Bryson JE, Gourlay ML. Bisphosphonate use in acute and chronic spinal cord injury: a systematic review. J Spinal Cord Med. 2009;32(3):215–25.

    Article  Google Scholar 

  73. Cirnigliaro CM, Myslinski MJ, La Fountaine MF, Kirshblum SC, Forrest GF, Bauman WA. Bone loss at the distal femur and proximal tibia in persons with spinal cord injury: imaging approaches, risk of fracture, and potential treatment options. Osteoporos Int. 2017;28(3):747–65. https://doi.org/10.1007/s00198-016-3798-x.

    Article  PubMed  CAS  Google Scholar 

  74. • Frotzler A, Krebs J, Gohring A, Hartmann K, Tesini S, Lippuner K. Osteoporosis in the lower extremities in chronic spinal cord injury. Spinal Cord. 2019. https://doi.org/10.1038/s41393-019-0383-0A cross-sectional investigation to investigate the effect of chronic motor complete spinal cord injury (SCI) and sex on bone densitometry parameters of the hip, femoral neck, tibial epiphysis, and diaphysis and on long bone fractures. Compared with able-bodied women and men, individuals with chronic motor complete SCI showed considerably lower bone densitometry values and a higher historical fracture rate.

  75. Hammond ER, Metcalf HM, McDonald JW, Sadowsky CL. Bone mass in individuals with chronic spinal cord injury: associations with activity-based therapy, neurologic and functional status, a retrospective study. Arch Phys Med Rehabil. 2014;95(12):2342–9. https://doi.org/10.1016/j.apmr.2014.07.395.

    Article  PubMed  Google Scholar 

  76. Mazess RB. Bone densitometry of the axial skeleton. Orthop Clin North Am. 1990;21(1):51–63.

    PubMed  CAS  Google Scholar 

  77. Asselin P, Knezevic S, Kornfeld S, Cirnigliaro C, Agranova-Breyter I, Bauman WA, et al. Heart rate and oxygen demand of powered exoskeleton-assisted walking in persons with paraplegia. J Rehabil Res Dev. 2015;52(2):147–58. https://doi.org/10.1682/JRRD.2014.02.0060.

    Article  PubMed  Google Scholar 

  78. Gorgey AS, Wade R, Sumrell R, Villadelgado L, Khalil RE, Lavis T. Exoskeleton training may improve level of physical activity after spinal cord injury: a case series. Top Spinal Cord Inj Rehabil. 2017;23(3):245–55. https://doi.org/10.1310/sci16-00025.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lester RM, Gorgey AS. Feasibility of robotic exoskeleton ambulation in a C4 person with incomplete spinal cord injury: a case report. Spinal Cord Series Cases. 2018;4(36).

  80. Yang A, Asselin P, Knezevic S, Kornfeld S, Spungen AM. Assessment of in-hospital walking velocity and level of assistance in a powered exoskeleton in persons with spinal cord injury. Top Spinal Cord Inj Rehabil. 2015;21(2):100–9. https://doi.org/10.1310/sci2102-100.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Spungen AM, Bauman WA, Biswas K, Jones K, Snodgrass AJ, Goetz L et al. Designing a randomized control trial to measure impact on quality of life in persons with chronic spinal cord injury after performing exoskeletal-assisted walking at home and in the community. Contemporary Clinical Trials (Under Review). 2019.

  82. Troy KL, Morse LR. Measurement of bone: diagnosis of SCI-induced osteoporosis and fracture risk prediction. Top Spinal Cord Inj Rehabil. 2015;21(4):267–74. https://doi.org/10.1310/sci2104-267.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Prentice A, Parsons TJ, Cole TJ. Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants. Am J Clin Nutr. 1994;60(6):837–42.

    Article  CAS  Google Scholar 

  84. Bonnick SL. Bone densitometry in clinical practice: application and interpretation. New York: Humana Press, Pringer; 2010.

    Book  Google Scholar 

Download references

Funding

This article is financially supported by the Veterans Affairs Rehabilitation Research and Development Service (#B2020-C) and the James J. Peters VA Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Cirnigliaro.

Ethics declarations

Conflict of Interest

Christopher M. Cirnigliaro, MS, Steven C. Kirshblum, MD, and William A. Bauman, MD have no conflict of interest or financial disclosure with regard to the information presented.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Spinal Cord Injury Rehabilitation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cirnigliaro, C.M., Kirshblum, S.C. & Bauman, W.A. Bone Loss and the Current Diagnosis of Osteoporosis and Risk of Fragility Fracture in Persons with Spinal Cord Injury. Curr Phys Med Rehabil Rep 8, 127–140 (2020). https://doi.org/10.1007/s40141-020-00268-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40141-020-00268-2

Keywords

Navigation