Skip to main content

Advertisement

Log in

Strategies and lessons in spinal cord injury rehabilitation

  • Spinal Cord Injury Rehabilitation (CL. Sadowsky)
  • Published:
Current Physical Medicine and Rehabilitation Reports Aims and scope Submit manuscript

Abstract

The spinal cord is often underappreciated as part of the central nervous system. Like the brain, the spinal cord can independently carry out relatively complex behaviors, such as left–right and flexor–extension alternation of the limbs, through activation of resident central pattern generator circuitry. Here the spinal cord integrates ascending or local proprioceptive information with descending sensory and volitional information. In the context of injury, portions of the isolated spinal cord may still be capable of carrying out sophisticated processing for sensorimotor function. Several modes of stimulation appear to activate the central pattern generating circuitry in SCI: treadmill stepping, magnetic stimulation, electrical stimulation, vibratory stimulation, and pharmacologic agents. Like the brain, the spinal cord is capable of classical and operant conditioning. This observation highlights the need for well-planned therapeutic interventions that work with the innate behavior of the cord and avoid maladaptive learning that can occur if noxious stimuli are present during rehabilitation. Patient-specific multimodal therapies that work with innate spinal cord behaviors are most likely to benefit patients with SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Alaynick WA, Jessell TM, Pfaff SL. SnapShot: spinal cord development. Cell. 2011;146:178e1.

    Article  CAS  Google Scholar 

  2. • Lu DC, Niu T, Alaynick WA. Molecular and cellular development of spinal cord locomotor circuitry. Front Mol Neurosci. 2015;8. This paper reviews several interneuron classes that contribute to the CPG in experimental animals.

  3. Brown TG. The intrinsic factors in the act of progression in the mammal. Proceedings of the Royal Society of London, Series B (containing papers of a biological character). 1911;19:308–19.

  4. Grillner S. Neurobiological bases of rhythmic motor acts in vertebrates. Science. 1985;228:143–9.

    Article  CAS  PubMed  Google Scholar 

  5. Grillner S, Jessell TM. Measured motion: searching for simplicity in spinal locomotor networks. Curr Opin Neurobiol. 2009;19:572–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goulding M. Circuits controlling vertebrate locomotion: moving in a new direction. Nat Rev Neurosci. 2009;10:507–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rossignol S, Dubuc R, Gossard J-P. Dynamic sensorimotor interactions in locomotion. Physiol Rev. 2006;86:89–154.

    Article  PubMed  Google Scholar 

  8. Horak FB, Nashner LM. Central programming of postural movements: adaptation to altered support-surface configurations. J Neurophysiol. 1986;55:1369–81.

    Article  CAS  PubMed  Google Scholar 

  9. Schubert M, Curt A, Jensen L, Dietz V. Corticospinal input in human gait: modulation of magnetically evoked motor responses. Exp Brain Res. 1997;115:234–46.

    Article  CAS  PubMed  Google Scholar 

  10. Edgerton V, Roy R, Hodgson J, Prober R, De Guzman C, De Leon R. Potential of adult mammalian lumbosacral spinal cord to execute and acquire improved locomotion in the absence of supraspinal input. J Neurotrauma. 1992;9:S119–28.

    PubMed  Google Scholar 

  11. Fukuyama H, Ouchi Y, Matsuzaki S, Nagahama Y, Yamauchi H, et al. Brain functional activity during gait in normal subjects: a SPECT study. Neurosci Lett. 1997;228:183–6.

    Article  CAS  PubMed  Google Scholar 

  12. Miyai I, Tanabe HC, Sase I, Eda H, Oda I, et al. Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage. 2001;14:1186–92.

    Article  CAS  PubMed  Google Scholar 

  13. Suzuki M, Miyai I, Ono T, Oda I, Konishi I, et al. Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study. Neuroimage. 2004;23:1020–6.

    Article  PubMed  Google Scholar 

  14. Cazalets JR, Bertrand S. Coupling between lumbar and sacral motor networks in the neonatal rat spinal cord. Eur J Neurosci. 2000;12:2993–3002.

    Article  CAS  PubMed  Google Scholar 

  15. Nathan P, Smith M, Deacon P. Vestibulospinal, reticulospinal and descending propriospinal nerve fibres in man. Brain. 1996;119:1809–33.

    Article  PubMed  Google Scholar 

  16. Barbeau H, Rossignol S. Recovery of locomotion after chronic spinalization in the adult cat. Brain Res. 1987;412:84–95.

    Article  CAS  PubMed  Google Scholar 

  17. De Leon R, Hodgson J, Roy R, Edgerton V. Locomotor capacity attributable to step training versus spontaneous recovery after spinalization in adult cats. J Neurophysiol. 1998;79:1329–40.

    Article  PubMed  Google Scholar 

  18. Lovely R, Gregor R, Roy R, Edgerton V. Weight-bearing hindlimb stepping in treadmill-exercised adult spinal cats. Brain Res. 1990;514:206–18.

    Article  CAS  PubMed  Google Scholar 

  19. Harkema S, Gerasimenko Y, Hodes J, Burdick J, Angeli C, et al. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. The Lancet. 2011;377:1938–47.

    Article  Google Scholar 

  20. Grillner S. Locomotion in vertebrates: central mechanisms and reflex interaction. Physiol Rev. 1975;55:247–304.

    Article  CAS  PubMed  Google Scholar 

  21. Grillner S, Zangger P. On the central generation of locomotion in the low spinal cat. Exp Brain Res. 1979;34:241–61.

    Article  CAS  PubMed  Google Scholar 

  22. Groves PM, DeMarco R, Thompson RF. Habituation and sensitization of spinal interneuron activity in acute spinal cat. Brain Res. 1969;14:521–5.

    Article  CAS  PubMed  Google Scholar 

  23. Thompson RF, Spencer WA. Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychol Rev. 1966;73:16.

    Article  CAS  PubMed  Google Scholar 

  24. Buerger A, Fennessy A. Learning of leg position in chronic spinal rats. Nature. 1970;225:751–2.

    Article  CAS  PubMed  Google Scholar 

  25. Grau JW, Crown ED, Ferguson AR, Washburn SN, Hook MA, Miranda RC. Instrumental learning within the spinal cord: underlying mechanisms and implications for recovery after injury. Behav Cogn Neurosci Rev. 2006;5:191–239.

    Article  PubMed  Google Scholar 

  26. Sekhon LH, Fehlings MG. Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine. 2001;26:S2–12.

    Article  CAS  PubMed  Google Scholar 

  27. Raineteau O, Schwab ME. Plasticity of motor systems after incomplete spinal cord injury. Nat Rev Neurosci. 2001;2:263–73.

    Article  CAS  PubMed  Google Scholar 

  28. Ferguson AR, Huie JR, Crown ED, Grau JW. Central nociceptive sensitization vs. spinal cord training: opposing forms of plasticity that dictate function after complete spinal cord injury. Front Physiol. 2012;3:396.

    PubMed  PubMed Central  Google Scholar 

  29. Bareyre FM, Schwab ME. Inflammation, degeneration and regeneration in the injured spinal cord: insights from DNA microarrays. Trends Neurosci. 2003;26:555–63.

    Article  CAS  PubMed  Google Scholar 

  30. Kiehn O. Locomotor circuits in the mammalian spinal cord. Annu Rev Neurosci. 2006;29:279–306.

    Article  CAS  PubMed  Google Scholar 

  31. Ichiyama RM, Courtine G, Gerasimenko YP, Yang GJ, van den Brand R, et al. Step training reinforces specific spinal locomotor circuitry in adult spinal rats. J Neurosci. 2008;28:7370–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Giszter SF, Hockensmith G, Ramakrishnan A, Udoekwere UI. How spinalized rats can walk: biomechanics, cortex, and hindlimb muscle scaling–implications for rehabilitation. Ann N Y Acad Sci. 2010;1198:279–93.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Anderson KD, Gunawan A, Steward O. Quantitative assessment of forelimb motor function after cervical spinal cord injury in rats: relationship to the corticospinal tract. Exp Neurol. 2005;194:161–74.

    Article  PubMed  Google Scholar 

  34. Hiersemenzel LP, Curt A, Dietz V. From spinal shock to spasticity: neuronal adaptations to a spinal cord injury. Neurology. 2000;54:1574–82.

    Article  CAS  PubMed  Google Scholar 

  35. Dietz V, Harkema SJ. Locomotor activity in spinal cord-injured persons. J Appl Physiol. 2004;96:1954–60.

    Article  CAS  PubMed  Google Scholar 

  36. •• Hubli M, Bolliger M, Dietz V. Neuronal dysfunction in chronic spinal cord injury. Spinal Cord. 2011;49:582–7. This paper summarized electrophysiologic changes in human subjects after chronic (1 year) spinal cord injury.

  37. Dietz V, Grillner S, Trepp A, Hubli M, Bolliger M. Changes in spinal reflex and locomotor activity after a complete spinal cord injury: a common mechanism? Brain. 2009;132:2196–205.

    Article  CAS  PubMed  Google Scholar 

  38. Adkins DL, Boychuk J, Remple MS, Kleim JA. Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. J Appl Physiol. 2006;101:1776–82.

    Article  PubMed  Google Scholar 

  39. Goldshmit Y, Lythgo N, Galea MP, Turnley AM. Treadmill training after spinal cord hemisection in mice promotes axonal sprouting and synapse formation and improves motor recovery. J Neurotrauma. 2008;25:449–65.

    Article  PubMed  Google Scholar 

  40. Hutchinson KJ, Gomez-Pinilla F, Crowe MJ, Ying Z, Basso DM. Three exercise paradigms differentially improve sensory recovery after spinal cord contusion in rats. Brain. 2004;127:1403–14.

    Article  PubMed  Google Scholar 

  41. Liu M, Stevens-Lapsley JE, Jayaraman A, Ye F, Conover C, et al. Impact of treadmill locomotor training on skeletal muscle IGF1 and myogenic regulatory factors in spinal cord injured rats. Eur J Appl Physiol. 2010;109:709–20.

    Article  CAS  PubMed  Google Scholar 

  42. Winchester P, McColl R, Querry R, Foreman N, Mosby J, et al. Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury. Neurorehabil Neural Repair. 2005;19:313–24.

    Article  PubMed  Google Scholar 

  43. Enzinger C, Dawes H, Johansen-Berg H, Wade D, Bogdanovic M, et al. Brain activity changes associated with treadmill training after stroke. Stroke. 2009;40:2460–7.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Eccles RM, Lundberg A. Significance of supraspinal control of reflex actions by impulses in muscle afferents. Experientia. 1958;14:197–9.

    Article  CAS  PubMed  Google Scholar 

  45. Perez MA, Field-Fote EC, Floeter MK. Patterned sensory stimulation induces plasticity in reciprocal ia inhibition in humans. J Neurosci. 2003;23:2014–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. •• Mehrholz J, Kugler J, Pohl M. Locomotor training for walking after spinal cord injury. Spine. 2008;33:E768–77. This is a Cochran review of the published RCTs regarding functional recoveries in SCI subjects with a variety of rehabilitation methods.

    Article  PubMed  Google Scholar 

  47. Harkema SJ. Plasticity of interneuronal networks of the functionally isolated human spinal cord. Brain Res Rev. 2008;57:255–64.

    Article  PubMed  Google Scholar 

  48. Gurfinkel V, Levik YS, Kazennikov O, Selionov V. Locomotor-like movements evoked by leg muscle vibration in humans. Eur J Neurosci. 1998;10:1608–12.

    Article  CAS  PubMed  Google Scholar 

  49. Selionov VA, Ivanenko YP, Solopova IA, Gurfinkel VS. Tonic central and sensory stimuli facilitate involuntary air-stepping in humans. J Neurophysiol. 2009;101:2847–58.

    Article  CAS  PubMed  Google Scholar 

  50. Gerasimenko Y, Gorodnichev R, Machueva E, Pivovarova E, Semyenov D, et al. Novel and direct access to the human locomotor spinal circuitry. J Neurosci. 2010;30:3700–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Courtine G, Song B, Roy RR, Zhong H, Herrmann JE, et al. Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat Med. 2008;14:69–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Courtine G, Gerasimenko Y, van den Brand R, Yew A, Musienko P, et al. Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci. 2009;12:1333–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lapointe NP, Guertin PA. Synergistic effects of D1/5 and 5-HT1A/7 receptor agonists on locomotor movement induction in complete spinal cord-transected mice. J Neurophysiol. 2008;100:160–8.

    Article  CAS  PubMed  Google Scholar 

  54. Rossignol S, Giroux N, Chau C, Marcoux J, Brustein E, Reader T. Pharmacological aids to locomotor training after spinal injury in the cat. J Physiol. 2001;533:65–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Domingo A, Al-Yahya AA, Asiri Y, Eng JJ, Lam, Spinal Cord Injury Rehabilitation Evidence Research Team T. A systematic review of the effects of pharmacological agents on walking function in people with spinal cord injury. J Neurotrauma. 2012;29:865–79.

    Article  PubMed  Google Scholar 

  56. Cogiamanian F, Vergari M, Pulecchi F, Marceglia S, Priori A. Effect of spinal transcutaneous direct current stimulation on somatosensory evoked potentials in humans. Clin Neurophysiol. 2008;119:2636–40.

    Article  PubMed  Google Scholar 

  57. Cortes M, Thickbroom GW, Valls-Sole J, Pascual-Leone A, Edwards DJ. Spinal associative stimulation: a non-invasive stimulation paradigm to modulate spinal excitability. Clin Neurophysiol. 2011;122:2254–9.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Norton JA, Mushahwar VK. Afferent inputs to mid- and lower-lumbar spinal segments are necessary for stepping in spinal cats. Ann N Y Acad Sci. 2010;1198:10–20.

    Article  PubMed  Google Scholar 

  59. • Knikou M. Functional reorganization of soleus H-reflex modulation during stepping after robotic-assisted step training in people with complete and incomplete spinal cord injury. Exp Brain Res. 2013;228:279–96. This paper demonstrates that the human spinal cord can learn from proprioceptive inputs that are generated during treadmill stepping.

    Article  PubMed  Google Scholar 

  60. Fallon JB, Macefield VG. Vibration sensitivity of human muscle spindles and Golgi tendon organs. Muscle Nerve. 2007;36:21–9.

    Article  PubMed  Google Scholar 

  61. Askari S, Chao T, Conn L, Partida E, Lazzaretto T, et al. Effect of functional electrical stimulation (FES) combined with robotically assisted treadmill training on the EMG profile. In: Proceedings of the annual international conference of the IEEE Engineering in Medicine and Biology Society. IEEE; 2011. p. 3043–46.

  62. Gorodnichev RM, Pivovarova EA, Pukhov A, Moiseev SA, Savokhin AA, et al. Transcutaneous electrical stimulation of the spinal cord: non-invasive tool for activation of locomotor circuitry in human. Fiziol Cheloveka. 2012;38:46–56.

    CAS  PubMed  Google Scholar 

  63. • Duclos C, Kemlin C, Lazert D, Gagnon D, Dyer JO, Forget R. Complex muscle vibration patterns to induce gait-like lower-limb movements: proof of concept. J Rehabil Res Dev. 2014;51:245–51. Use of vibratory stimulation to recapitualte proprioceptive sensory information and activate CPG circuitry.

  64. AuYong N, Lu DC. Neuromodulation of the lumbar spinal locomotor circuit. Neurosurg Clin N Am. 2014;25:15–23.

    Article  PubMed  Google Scholar 

  65. Edgerton VR, Harkema S. Epidural stimulation of the spinal cord in spinal cord injury: current status and future challenges. Expert Rev Neurother. 2011;11:1351–3.

    Article  PubMed  PubMed Central  Google Scholar 

  66. • Gerasimenko Y, Gorodnichev RM, Pukhov A, Moshonkina TR, Savochin A, et al. Initiation and modulation of locomotor circuitry output with multi-site transcutaneous electrical stimulation of the spinal cord in non-injured humans. J Neurophysiol. 2014;113:837–42. This paper demosntrates the use of transcutaneous stimulation using the “Russian Stimulation” pattern of a 10 kHz carrier wave turned on for several millisconds at 1040 times per socnond. This method appears to activate spinal CPG circuitry in intact individuals.

    Article  PubMed  Google Scholar 

  67. Adams MM, Ditor DS, Tarnopolsky MA, Phillips SM, McCartney N, Hicks AL. The effect of body weight-supported treadmill training on muscle morphology in an individual with chronic, motor-complete spinal cord injury: a case study. J Spinal Cord Med. 2006;29:167–71.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Forrest GF, Sisto SA, Barbeau H, Kirshblum SC, Wilen J, et al. Neuromotor and musculoskeletal responses to locomotor training for an individual with chronic motor complete AIS-B spinal cord injury. J Spinal Cord Med. 2008;31:509–21.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ditor DS, Kamath MV, MacDonald MJ, Bugaresti J, McCartney N, Hicks AL. Effects of body weight-supported treadmill training on heart rate variability and blood pressure variability in individuals with spinal cord injury. J Appl Physiol. 2005;98:1519–25.

    Article  PubMed  Google Scholar 

  70. Soyupek F, Savas S, Ozturk O, Ilgun E, Bircan A, Akkaya A. Effects of body weight supported treadmill training on cardiac and pulmonary functions in the patients with incomplete spinal cord injury. J Back Musculoskeletal Rehabil. 2009;22:213–8.

    Article  Google Scholar 

  71. Turiel M, Sitia S, Cicala S, Magagnin V, Bo I, et al. Robotic treadmill training improves cardiovascular function in spinal cord injury patients. Int J Cardiol. 2011;149:323–9.

    Article  PubMed  Google Scholar 

  72. Hesse S, Werner C, Bardeleben A. Electromechanical gait training with functional electrical stimulation: case studies in spinal cord injury. Spinal Cord. 2004;42:346–52.

    Article  CAS  PubMed  Google Scholar 

  73. Manella KJ, Torres J, Field-Fote EC. Restoration of walking function in an individual with chronic complete (AIS A) spinal cord injury. J Rehabil Med. 2010;42:795–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This review was made possible by generous support from the J. Yang & Family Foundation. The research described was conducted in the UCLA Clinical and Translational Research Center (CTRC), which was supported by NIH/National Center for Advancing Translational Science (NCATS) UCLA CTSI Grant Number UL1TR000124. D.C.L. is a 1999 Paul & Daisy Soros New American Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel C. Lu.

Ethics declarations

Conflict of Interest

Tianyi Niu, William A. Alaynick, and Daniel C. Lu declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Spinal Cord Injury Rehabilitation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, T., Alaynick, W.A. & Lu, D.C. Strategies and lessons in spinal cord injury rehabilitation. Curr Phys Med Rehabil Rep 3, 206–213 (2015). https://doi.org/10.1007/s40141-015-0096-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40141-015-0096-z

Keywords

Navigation