Skip to main content

Advertisement

Log in

Autonomic Nervous System Dysfunction Following Spinal Cord Injury: Cardiovascular, Cerebrovascular, and Thermoregulatory Effects

  • Spinal Cord Injury Rehabilitation (CL Sadowsky, Section Editor)
  • Published:
Current Physical Medicine and Rehabilitation Reports Aims and scope Submit manuscript

Abstract

Deficits in motor and sensory function secondary to spinal cord injury (SCI) are well appreciated and can be clinically assessed using the International Standards for the Neurological Classification of SCI (ISNCSCI), which were revised in 2010 and a dataset published in 2012. Subsequently, the International Standard on documentation of remaining Autonomic Function after SCI was established in 2012, which is to be used as an adjunct to the ISNCSCI exam. The autonomic nervous system is responsible, solely, or in part, for regulation of many physiological processes and the impact of SCI on this regulatory process cannot be overstated. However, given that most of these physiological processes occur without voluntary or conscience action, assessment of deficits in autonomic control is limited to end-organ function. Over the past 10 years, our knowledge regarding the underling pathophysiology of autonomic dysfunction after SCI has greatly improved. This review will focus on what is currently known and published regarding the loss of integral autonomic control of the heart and circulation and the consequent effects on the cerebral vasculature and thermoregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published within the last 3 calendar years are highlighted as: • Of importance

  1. Krassioukov A, Claydon VE. The clinical problems in cardiovascular control following spinal cord injury: an overview. Prog Brain Res. 2006;152:223–9.

    Article  PubMed  Google Scholar 

  2. Mayorov DN, Adams MA, Krassioukov AV. Telemetric blood pressure monitoring in conscious rats before and after compression injury of spinal cord. J Neurotrauma. 2001;18(7):727–36.

    Article  CAS  PubMed  Google Scholar 

  3. Krassioukov AV, Bunge RP, Pucket WR, Bygrave MA. The changes in human spinal sympathetic preganglionic neurons after spinal cord injury. Spinal Cord. 1999;37(1):6–13.

    Article  CAS  PubMed  Google Scholar 

  4. Krassioukov AV, Johns DG, Schramm LP. Sensitivity of sympathetically correlated spinal interneurons, renal sympathetic nerve activity, and arterial pressure to somatic and visceral stimuli after chronic spinal injury. J Neurotrauma. 2002;19(12):1521–9.

    Article  PubMed  Google Scholar 

  5. Krenz NR, Meakin SO, Krassioukov AV, Weaver LC. Neutralizing intraspinal nerve growth factor blocks autonomic dysreflexia caused by spinal cord injury. J Neurosci. 1999;19(17):7405–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ramer LM, Van Stolk AP, Inskip JA, Ramer MS, Krassioukov AV. Plasticity of TRPV1-expressing sensory neurons mediating autonomic dysreflexia following spinal cord injury. Front Physiol. 2012;3:257.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Arnold JM, Feng QP, Delaney GA, Teasell RW. Autonomic dysreflexia in tetraplegic patients: evidence for alpha-adrenoceptor hyper-responsiveness. Clin Auton Res. 1995;5(5):267–70.

    Article  CAS  PubMed  Google Scholar 

  8. Krassioukov AV, Weaver LC. Morphological changes in sympathetic preganglionic neurons after spinal cord injury in rats. Neuroscience. 1996;70(1):211–25.

    Article  CAS  PubMed  Google Scholar 

  9. West CR, Popok D, Crawford MA, Krassioukov AV. Characterizing the temporal development of cardiovascular dysfunction in response to spinal cord injury. J Neurotrauma. 2014;32:922–30.

    Article  Google Scholar 

  10. Krassioukov A. Autonomic dysreflexia in acute spinal cord injury: incidence, mechanisms, and management. SCI Nurs. 2004;21(4):215–6.

    PubMed  Google Scholar 

  11. Krenz NR, Weaver LC. Sprouting of primary afferent fibers after spinal cord transection in the rat. Neuroscience. 1998;85(2):443–58.

    Article  CAS  PubMed  Google Scholar 

  12. Ackery AD, Norenberg MD, Krassioukov A. Calcitonin gene-related peptide immunoreactivity in chronic human spinal cord injury. Spinal Cord. 2007;45(10):678–86.

    Article  CAS  PubMed  Google Scholar 

  13. Cameron AA, Smith GM, Randall DC, Brown DR, Rabchevsky AG. Genetic manipulation of intraspinal plasticity after spinal cord injury alters the severity of autonomic dysreflexia. J Neurosci. 2006;26(11):2923–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alan N, Ramer LM, Inskip JA, Golbidi S, Ramer MS, Laher I, Krassioukov AV. Recurrent autonomic dysreflexia exacerbates vascular dysfunction after spinal cord injury. Spine J. 2010;10(12):1108–17.

    Article  PubMed  Google Scholar 

  15. Brock JA, Yeoh M, Mclachlan EM. Enhanced neurally evoked responses and inhibition of norepinephrine reuptake in rat mesenteric arteries after spinal transection. Am J Physiol Heart Circ Physiol. 2006;290(1):H398–405.

    Article  CAS  PubMed  Google Scholar 

  16. Mathias CJ, Frankel HL, Christensen NJ, Spalding JM. Enhanced pressor response to noradrenaline in patients with cervical spinal cord transection. Brain. 1976;99(4):757–70.

    Article  CAS  PubMed  Google Scholar 

  17. Wecht JM, Weir JP, Goldstein DS, Krothe-Petroff A, Spungen AM, Holmes C, Bauman WA. Direct and reflexive effects of nitric oxide synthase inhibition on blood pressure. Am J Physiol Heart Circ Physiol. 2008;294(1):H190–7.

    Article  CAS  PubMed  Google Scholar 

  18. • West CR, Mills P, Krassioukov AV. Influence of the neurological level of spinal cord injury on cardiovascular outcomes in humans: a meta-analysis. Spinal Cord. 2012;50(7):484–92. Provides an up-to-date concise summary of relevant evidence supporting the role of autonomic impairment on changes in cardiac structurer and function post-SCI.

    Article  CAS  PubMed  Google Scholar 

  19. Kessler KM, Pina I, Green B, Burnett B, Laighold M, Bilsker M, Palomo AR, Myerburg RJ. Cardiovascular findings in quadriplegic and paraplegic patients and in normal subjects. Am J Cardiol. 1986;58(6):525–30.

    Article  CAS  PubMed  Google Scholar 

  20. Huonker M, Schmid A, Sorichter S, Schmidt-Trucksab A, Mrosek P, Keul J. Cardiovascular differences between sedentary and wheelchair-trained subjects with paraplegia. Med Sci Sports Exerc. 1998;30(4):609–13.

    Article  CAS  PubMed  Google Scholar 

  21. West CR, Campbell IG, Shave RE, Romer LM. Resting cardiopulmonary function in paralympic athletes with cervical spinal cord injury. Med Sci Sports Exerc. 2012;44(2):323–9.

    Article  PubMed  Google Scholar 

  22. De Groot PC, Van Dijk A, Dijk E, Hopman MT. Preserved cardiac function after chronic spinal cord injury. Arch Phys Med Rehabil. 2006;87(9):1195–200.

    Article  PubMed  Google Scholar 

  23. Matos-Souza JR, Pithon KR, Oliveira RT, Teo FH, Blotta MH, Cliquet A Jr, Nadruz W Jr. Altered left ventricular diastolic function in subjects with spinal cord injury. Spinal Cord. 2011;49(1):65–9.

    Article  CAS  PubMed  Google Scholar 

  24. West CR, Crawford MA, Poormasjedi-Meibod MS, Currie KD, Fallavollita A, Yuen V, Mcneill JH, Krassioukov AV. Passive hind-limb cycling improves cardiac function and reduces cardiovascular disease risk in experimental spinal cord injury. J Physiol. 2014;592(Pt 8):1771–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. • Lujan HL, Janbaih H, Dicarlo SE. Dynamic interaction between the heart and its sympathetic innervation following T5 spinal cord transection. J Appl Physiol. 2012;113(8):1332–41. Provides data describing the influence of sympathetic impairment on cardiac function in an animal model of T5 SCI.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lujan HL, Janbaih H, Dicarlo SE. Structural remodeling of the heart and its premotor cardioinhibitory vagal neurons following T(5) spinal cord transection. J Appl Physiol. 2014;116(9):1148–55.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Krassioukov A, West C. The role of autonomic function on sport performance in athletes with spinal cord injury. PM&R. 2014;6(8):S58–65.

    Article  Google Scholar 

  28. West CR, Campbell IG, Shave RE, Romer LM. Effects of abdominal binding on cardiorespiratory function in cervical spinal cord injury. Respir Physiol Neurobiol. 2012;180(2–3):275–82.

    Article  PubMed  Google Scholar 

  29. Pitetti KH, Barrett PJ, Campbell KD, Malzahn DE. The effect of lower body positive pressure on the exercise capacity of individuals with spinal cord injury. Med Sci Sports Exerc. 1994;26(4):463–8.

    Article  CAS  PubMed  Google Scholar 

  30. Hopman MT, Kamerbeek IC, Pistorius M, Binkhorst RA. The effect of an anti-G suit on the maximal performance of individuals with paraplegia. Int J Sports Med. 1993;14(7):357–61.

    Article  CAS  PubMed  Google Scholar 

  31. Lujan HL, Palani G, Dicarlo SE. Structural neuroplasticity following T5 spinal cord transection: increased cardiac sympathetic innervation density and SPN arborization. Am J Physiol Regul Integr Comp Physiol. 2010;299(4):R985–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lujan HL, Dicarlo SE. T5 spinal cord transection increases susceptibility to reperfusion-induced ventricular tachycardia by enhancing sympathetic activity in conscious rats. Am J Physiol Heart Circ Physiol. 2007;293(6):H3333–9.

    Article  CAS  PubMed  Google Scholar 

  33. Ravensbergen HJ, Walsh ML, Krassioukov AV, Claydon VE. Electrocardiogram-based predictors for arrhythmia after spinal cord injury. Clin Auton Res. 2012;22(6):265–73.

    Article  CAS  PubMed  Google Scholar 

  34. Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science. 1981;213(4504):220–2.

    Article  CAS  PubMed  Google Scholar 

  35. Ditor DS, Kamath MV, Macdonald MJ, Bugaresti J, Mccartney N, Hicks AL. Effects of body weight-supported treadmill training on heart rate variability and blood pressure variability in individuals with spinal cord injury. J Appl Physiol. 2005;98(4):1519–25.

    Article  PubMed  Google Scholar 

  36. Ditor DS, Macdonald MJ, Kamath MV, Bugaresti J, Adams M, Mccartney N, Hicks AL. The effects of body-weight supported treadmill training on cardiovascular regulation in individuals with motor-complete SCI. Spinal Cord. 2005;43(11):664–73.

    Article  CAS  PubMed  Google Scholar 

  37. Grimm DR, De Meersman RE, Almenoff PL, Spungen AM, Bauman WA. Sympathovagal balance of the heart in subjects with spinal cord injury. Am J Physiol. 1997;272(2 Pt 2):H835–42.

    CAS  PubMed  Google Scholar 

  38. Inoue K, Ogata H, Hayano J, Miyake S, Kamada T, Kuno M, Kumashiro M. Assessment of autonomic function in traumatic quadriplegic and paraplegic patients by spectral analysis of heart rate variability. J Auton Nerv Syst. 1995;54(3):225–34.

    Article  CAS  PubMed  Google Scholar 

  39. Wang YH, Huang TS, Lin JL, Hwang JJ, Chan HL, Lai JS, Tseng YZ. Decreased autonomic nervous system activity as assessed by heart rate variability in patients with chronic tetraplegia. Arch Phys Med Rehabil. 2000;81(9):1181–4.

    Article  CAS  PubMed  Google Scholar 

  40. Ditor DS, Kamath MV, Macdonald MJ, Bugaresti J, Mccartney N, Hicks AL. Reproducibility of heart rate variability and blood pressure variability in individuals with spinal cord injury. Clin Auton Res. 2005;15(6):387–93.

    Article  PubMed  Google Scholar 

  41. Marks BL, Lightfoot JT. Reproducibility of resting heart rate variability with short sampling periods. Can J Appl Physiol. 1999;24(4):337–48.

    Article  CAS  PubMed  Google Scholar 

  42. Jan YK, Anderson M, Soltani J, Burns S, Foreman RD. Comparison of changes in heart rate variability and sacral skin perfusion in response to postural changes in people with spinal cord injury. J Rehabil Res Dev. 2013;50(2):203–14.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Millar PJ, Cotie LM, St Amand T, Mccartney N, Ditor DS. Effects of autonomic blockade on nonlinear heart rate dynamics. Clin Auton Res. 2010;20(4):241–7.

    Article  PubMed  Google Scholar 

  44. Wecht JM, Weir JP, Bauman WA. Blunted heart rate response to vagal withdrawal in persons with tetraplegia. Clin Auton Res. 2006;16(6):378–83.

    Article  PubMed  Google Scholar 

  45. Wecht JM, Weir JP, Demeersman RE, Schilero GJ, Handrakis JP, Lafountaine MF, Cirnigliaro CM, Kirshblum SC, Bauman WA. Cold face test in persons with spinal cord injury: age versus inactivity. Clin Auton Res. 2009;19(4):221–9.

    Article  PubMed  Google Scholar 

  46. Wecht JM, Marsico R, Weir JP, Spungen AM, Bauman WA, De Meersman RE. Autonomic recovery from peak arm exercise in fit and unfit individuals with paraplegia. Med Sci Sports Exerc. 2006;38(7):1223–8.

    Article  PubMed  Google Scholar 

  47. Krassioukov A, Warburton DE, Teasell R, Eng JJ, Spinal Cord Injury Rehabilitation Evidence Research, Team. A systematic review of the management of autonomic dysreflexia after spinal cord injury. Arch Phys Med Rehabil. 2009;90(4):682–95.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ekland MB, Krassioukov AV, Mcbride KE, Elliott SL. Incidence of autonomic dysreflexia and silent autonomic dysreflexia in men with spinal cord injury undergoing sperm retrieval: implications for clinical practice. J Spinal Cord Med. 2008;31(1):33–9.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hubli M, Gee CM, Krassioukov AV. Refined assessment of blood pressure instability after spinal cord injury. Am J Hypertens. 2015;28(2):173–81.

    Article  PubMed  Google Scholar 

  50. Curt A, Nitsche B, Rodic B, Schurch B, Dietz V. Assessment of autonomic dysreflexia in patients with spinal cord injury. J Neurol Neurosurg Psychiatry. 1997;62(5):473–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wan D, Krassioukov AV. Life-threatening outcomes associated with autonomic dysreflexia: a clinical review. J Spinal Cord Med. 2014;37(1):2–10.

    Article  PubMed  PubMed Central  Google Scholar 

  52. De Groat WC, Yoshimura N. Mechanisms underlying the recovery of lower urinary tract function following spinal cord injury. Prog Brain Res. 2006;152:59–84.

    Article  PubMed  CAS  Google Scholar 

  53. Giannantoni A, Di Stasi SM, Scivoletto G, Mollo A, Silecchia A, Fuoco U, Vespasiani G. Autonomic dysreflexia during urodynamics. Spinal Cord. 1998;36(11):756–60.

    Article  CAS  PubMed  Google Scholar 

  54. Sheel AW, Krassioukov AV, Inglis JT, Elliott SL. Autonomic dysreflexia during sperm retrieval in spinal cord injury: influence of lesion level and sildenafil citrate. J Appl Physiol. 2005;99(1):53–8.

    Article  PubMed  Google Scholar 

  55. Kirshblum SC, House JG, O’connor KC. Silent autonomic dysreflexia during a routine bowel program in persons with traumatic spinal cord injury: a preliminary study. Arch Phys Med Rehabil. 2002;83(12):1774–6.

    Article  PubMed  Google Scholar 

  56. Eltorai I, Kim R, Vulpe M, Kasravi H, Ho W. Fatal cerebral hemorrhage due to autonomic dysreflexia in a tetraplegic patient: case report and review. Paraplegia. 1992;30(5):355–60.

    CAS  PubMed  Google Scholar 

  57. Elliott S, Krassioukov A. Malignant autonomic dysreflexia in spinal cord injured men. Spinal Cord. 2006;44(6):386–92.

    Article  CAS  PubMed  Google Scholar 

  58. Harris P. Self-induced autonomic dysreflexia (‘boosting’) practised by some tetraplegic athletes to enhance their athletic performance. Paraplegia. 1994;32(5):289–91.

    CAS  PubMed  Google Scholar 

  59. Report of a WHO expert committee. Arterial hypertension. World Health Organ Tech Rep Ser. 1978;628:7–56.

    Google Scholar 

  60. Tringali S, Oberer CW, Huang J. Low diastolic blood pressure as a risk for all-cause mortality in VA patients. Int J Hypertens. 2013;2013:178780.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Duschek S, Schandry R. Cognitive performance and cerebral blood flow in essential hypotension. Psychophysiology. 2004;41(6):905–13.

    Article  PubMed  Google Scholar 

  62. Barrett-Connor E, Palinkas LA. Low blood pressure and depression in older men: a population based study. BMJ. 1994;308(6926):446–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pilgrim JA, Stansfeld S, Marmot M. Low blood pressure, low mood? BMJ. 1992;304(6819):75–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Freeman R, Wieling W, Axelrod FB, Benditt DG, Benarroch E, Biaggioni I, Cheshire WP, Chelimsky T, Cortelli P, Gibbons CH, Goldstein DS, Hainsworth R, Hilz MJ, Jacob G, Kaufmann H, Jordan J, Lipsitz LA, Levine BD, Low PA, Mathias C, Raj SR, Robertson D, Sandroni P, Schatz I, Schondorff R, Stewart JM, Van Dijk JG. Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Clin Auton Res. 2011;21(2):69–72.

    Article  PubMed  Google Scholar 

  65. Wu JS, Yang YC, Lu FH, Wu CH, Chang CJ. Population-based study on the prevalence and correlates of orthostatic hypotension/hypertension and orthostatic dizziness. Hypertens Res. 2008;31(5):897–904.

    Article  PubMed  Google Scholar 

  66. Rose KM, Eigenbrodt ML, Biga RL, Couper DJ, Light KC, Sharrett AR, Heiss G. Orthostatic hypotension predicts mortality in middle-aged adults: the Atherosclerosis Risk In Communities (ARIC) Study. Circulation. 2006;114(7):630–6.

    Article  PubMed  Google Scholar 

  67. Czajkowska J, Ozhog S, Smith E, Perlmuter LC. Cognition and hopelessness in association with subsyndromal orthostatic hypotension. J Gerontol Ser A. 2010;65(8):873–9.

    Article  Google Scholar 

  68. Claydon VE, Krassioukov AV. Orthostatic hypotension and autonomic pathways after spinal cord injury. J Neurotrauma. 2006;23(12):1713–25.

    Article  PubMed  Google Scholar 

  69. Illman A, Stiller K, Williams M. The prevalence of orthostatic hypotension during physiotherapy treatment in patients with an acute spinal cord injury. Spinal Cord. 2000;38(12):741–7.

    Article  CAS  PubMed  Google Scholar 

  70. Carlozzi NE, Fyffe D, Morin KG, Byrne R, Tulsky DS, Victorson D, Lai JS, Wecht JM. Impact of blood pressure dysregulation on health-related quality of life in persons with spinal cord injury: development of a conceptual model. Arch Phys Med Rehabil. 2013;94(9):1721–30.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Jegede AB, Rosado-Rivera D, Bauman WA, Cardozo CP, Sano M, Moyer JM, Brooks M, Wecht JM. Cognitive performance in hypotensive persons with spinal cord injury. Clin Auton Res. 2010;20(1):3–9.

    Article  PubMed  Google Scholar 

  72. • Wecht JM, Rosado-Rivera D, Jegede A, Cirnigliaro CM, Jensen MA, Kirshblum S, Bauman WA. Systemic and cerebral hemodynamics during cognitive testing. Clin Auton Res. 2012;22(1):25–33. Provides evidence in support of a connection between autonomic cardiovascular impairment in persons with SCI, regardless of the level of lesion, on cerebral circulatory responses to cognitive testing.

    Article  PubMed  Google Scholar 

  73. Phillips AA, Krassioukov AV, Zheng MM, Warburton DE. Neurovascular coupling of the posterior cerebral artery in spinal cord injury: a pilot study. Brain Sci. 2013;3(2):781–9.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Markus H, Cullinane M. Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion. Brain. 2001;124(3):457–67.

    Article  CAS  PubMed  Google Scholar 

  75. O’brien JT, Erkinjuntti T, Reisberg B, Roman G, Sawada T, Pantoni L, Bowler JV, Ballard C, Decarli C, Gorelick PB, Rockwood K, Burns A, Gauthier S, Dekosky ST. Vascular cognitive impairment. Lancet Neurol. 2003;2(2):89–98.

    Article  PubMed  Google Scholar 

  76. Handrakis JP, Demeersman RE, Rosado-Rivera D, Lafountaine MF, Spungen AM, Bauman WA, Wecht JM. Effect of hypotensive challenge on systemic hemodynamics and cerebral blood flow in persons with tetraplegia. Clin Auton Res. 2009;19(1):39–45.

    Article  PubMed  Google Scholar 

  77. Phillips AA, Krassioukov AV, Ainslie PN, Warburton DE. Perturbed and spontaneous regional cerebral blood flow responses to changes in blood pressure after high-level spinal cord injury: the effect of midodrine. J Appl Physiol. 2014;116(6):645–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shin HK, Yoo KM, Chang HM, Caplan LR. Bilateral intracranial vertebral artery disease in the New England Medical Center, Posterior Circulation Registry. Arch Neurol. 1999;56(11):1353–8.

    Article  CAS  PubMed  Google Scholar 

  79. Lewis NC, Smith KJ, Bain AR, Wildfong KW, Numan T, Ainslie PN. Impact of transient hypotension on regional cerebral blood flow in humans. Clin Sci. 2015;129:169–78.

    Article  CAS  Google Scholar 

  80. Phillips AA, Warburton DE, Ainslie PN, Krassioukov AV. Regional neurovascular coupling and cognitive performance in those with low blood pressure secondary to high-level spinal cord injury: improved by alpha-1 agonist midodrine hydrochloride. J Cereb Blood Flow Metab. 2014;34(5):794–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wecht JM, Radulovic M, Rosado-Rivera D, Zhang RL, Lafountaine MF, Bauman WA. Orthostatic effects of midodrine versus L-NAME on cerebral blood flow and the renin-angiotensin-aldosterone system in tetraplegia. Arch Phys Med Rehabil. 2011;92(11):1789–95.

    Article  PubMed  Google Scholar 

  82. Wecht JM, Rosado-Rivera D, Handrakis JP, Radulovic M, Bauman WA. Effects of midodrine hydrochloride on blood pressure and cerebral blood flow during orthostasis in persons with chronic tetraplegia. Arch Phys Med Rehabil. 2010;91(9):1429–35.

    Article  PubMed  Google Scholar 

  83. Phillips A, Matin N, West C. Autonomic dysreflexia impairs cerebrovascular health and cognition in experimental spinal cord injury. FASEB. 2015;29(1):10.

    Google Scholar 

  84. Johnson PC, Wayland H. Regulation of blood flow in single capillaries. Am J Physiol. 1967;212(6):1405–15.

    Article  CAS  PubMed  Google Scholar 

  85. Stefanovska A, Bracic M, Kvernmo HD. Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique. IEEE Trans Bio-med Eng. 1999;46(10):1230–9.

    Article  CAS  Google Scholar 

  86. Den Uil CA, Klijn E, Lagrand WK, Brugts JJ, Ince C, Spronk PE, Simoons ML. The microcirculation in health and critical disease. Prog Cardiovasc Dis. 2008;51(2):161–70.

    Article  Google Scholar 

  87. Liao F, Burns S, Jan YK. Skin blood flow dynamics and its role in pressure ulcers. J Tissue Viability. 2013;22(2):25–36.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Deitrick G, Charalel J, Bauman W, Tuckman J. Reduced arterial circulation to the legs in spinal cord injury as a cause of skin breakdown lesions. Angiology. 2007;58(2):175–84.

    Article  PubMed  Google Scholar 

  89. Rappl LM. Physiological changes in tissues denervated by spinal cord injury tissues and possible effects on wound healing. Int Wound J. 2008;5(3):435–44.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Olive JL, Dudley GA, Mccully KK. Vascular remodeling after spinal cord injury. Med Sci Sports Exerc. 2003;35(6):901–7.

    Article  PubMed  Google Scholar 

  91. Rodriguez GP, Claus-Walker J, Kent MC, Stal S. Adrenergic receptors in insensitive skin of spinal cord injured patients. Arch Phys Med Rehabil. 1986;67(3):177–80.

    Article  CAS  PubMed  Google Scholar 

  92. Bernjak A, Deitrick GA, Bauman WA, Stefanovska A, Tuckman J. Basal sympathetic activity to the microcirculation in tetraplegic man revealed by wavelet transform of laser Doppler flowmetry. Microvasc Res. 2011;1:313–8.

    Article  Google Scholar 

  93. Mathias CJ, Christensen NJ, Corbett JL, Frankel HL, Goodwin TJ, Peart WS. Plasma catecholamines, plasma renin activity and plasma aldosterone in tetraplegic man, horizontal and tilted. Clin Sci Mol Med. 1975;49(4):291–9.

    CAS  PubMed  Google Scholar 

  94. La Fountaine MF, Rivera DR, Radulovic M, Bauman WA. The hemodynamic actions of insulin are blunted in the sublesional microvasculature of healthy persons with spinal cord injury. Am J Phys Med Rehabil. 2013;92(2):127–35.

    Article  PubMed  Google Scholar 

  95. Fealey RD. Interoception and autonomic nervous system reflexes thermoregulation. Handb Clin Neurol. 2013;117:79–88.

    Article  PubMed  Google Scholar 

  96. Jurkovich GJ. Environmental cold-induced injury. Surg Clin North Am. 2007;87(1):247–67.

    Article  PubMed  Google Scholar 

  97. Johnson JM, Minson CT, Kellogg DL Jr. Cutaneous vasodilator and vasoconstrictor mechanisms in temperature regulation. Compr Physiol. 2014;4(1):33–89.

    Article  PubMed  Google Scholar 

  98. Morrison SF, Nakamura K. Central neural pathways for thermoregulation. Front Biosci. 2011;16:74–104.

    Article  CAS  PubMed Central  Google Scholar 

  99. Charkoudian N. Skin blood flow in adult human thermoregulation: how it works, when it does not, and why. Mayo Clin Proc. 2003;78(5):603–12.

    Article  PubMed  Google Scholar 

  100. Shibasaki M, Wilson TE, Crandall CG. Neural control and mechanisms of eccrine sweating during heat stress and exercise. J Appl Physiol. 2006;100(5):1692–701.

    Article  PubMed  Google Scholar 

  101. Silver JR, Randall WC, Guttmann L. Spinal mediation of thermally induced sweating. J Neurol Neurosurg Psychiatry. 1991;54(4):297–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Guttmann L, Silver J, Wyndham CH. Thermoregulation in spinal man. J Physiol. 1958;142(3):406–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Downey JA, Darling RC, Chiodi HP. The response of tetraplegia patients to cold. Arch Phys Med Rehabil. 1967;48(12):645–9.

    CAS  PubMed  Google Scholar 

  104. Handrakis JP, Liu SA, Rosado-Rivera D, Krajewski M, Spungen AM, Bang C, Swonger K, Bauman WA. Effect of mild cold exposure on cognition in persons with tetraplegia. J Neurotrauma. 2015. doi:10.1089/neu.2014.3719.

    Article  PubMed  Google Scholar 

  105. Khan S, Plummer M, Martinez-Arizala A, Banovac K. Hypothermia in patients with chronic spinal cord injury. J Spinal Cord Med. 2007;30(1):27–30.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Handrakis JP, Liu SA, Rosado-Rivera D, Krajewski M, Sarker MS, Swonger K, Bauman WA. Self-reported effects of cold temperature exposure in persons with tetraplegia. J Spinal Cord Med. 2013;36(5):565–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jill M. Wecht.

Additional information

This article is part of the Topical Collection on Spinal Cord Injury Rehabilitation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wecht, J.M., La Fountaine, M.F., Handrakis, J.P. et al. Autonomic Nervous System Dysfunction Following Spinal Cord Injury: Cardiovascular, Cerebrovascular, and Thermoregulatory Effects. Curr Phys Med Rehabil Rep 3, 197–205 (2015). https://doi.org/10.1007/s40141-015-0093-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40141-015-0093-2

Keywords

Navigation