Skip to main content
Log in

Current Status of Neuromonitoring in Cardiac Surgery

  • Cardiovascular Anesthesia (J Fassl, Section Editor)
  • Published:
Current Anesthesiology Reports Aims and scope Submit manuscript

Abstract

Brain injury often complicates cardiac surgery with a wide spectrum of neurologic dysfunction running from evidence of stroke to cognitive impairment. Global or regional brain hypoxia represents the common cause of brain injury as the consequence of a mismatch between the oxygen demand and supply to the brain tissue. Whatever the etiological mechanism of the brain damage (cerebral embolism, hypo and/or hyper cerebral perfusion, hypoxia, and the systemic inflammatory response), the continuous intraoperative neuromonitoring should assess the cerebral blood flow and oxygenation and the brain function. The expanded role of the intraoperative neurologic monitoring in cardiac surgery setting has allowed the neurologic adverse events to be promptly detected. The main advantage of the intraoperative neuromonitoring is that they are noninvasive, portable, and reliable. The current literature, though showing low grade of evidence, suggests that intraoperative neuromonitoring may be protective against neurologic adverse events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Roach GW, Kanchuger M, Mangano CM, Newman M, Nussmeier N, Wolman R, et al. Adverse cerebral outcomes after coronary bypass surgery. N Engl J Med. 1996;335:1857–63.

    Article  CAS  Google Scholar 

  2. Fedorow C, Grocott H. Cerebral monitoring to optimize outcomes after cardiac surgery. Curr Opin Anaesthesiol. 2010;23(1):89–94. doi:10.1097/ACO.0b013e3283346d10.

    Article  PubMed  Google Scholar 

  3. Guarracino F. Cerebral monitoring during cardiovascular surgery. Curr Opin Anaesthesiol. 2008;21(1):50–4. doi:10.1097/ACO.0b013e3282f3f499.

    Article  PubMed  Google Scholar 

  4. Colak Z, Borojevic M, Bogovic A, Ivancan V, Biocina B, Majeric-Kogler V. Influence of intraoperative cerebral oximetry monitoring on neurocognitive function after coronary artery bypass surgery: a randomized, prospective study. Eur J Cardiothorac Surg. 2015;47(3):447–54. doi:10.1093/ejcts/ezu193.

    Article  PubMed  Google Scholar 

  5. Crocker E, Beggs T, Hassan A, Denault A, Lamarche Y, Bagshaw S, et al. Long-term effects of postoperative delirium in patients undergoing cardiac operation: a systematic review. Ann Thorac Surg. 2016;102(4):1391–9. doi:10.1016/j.athoracsur.2016.04.071.

    Article  PubMed  Google Scholar 

  6. Luthra S, Leiva Juarez MM, Taheer Z, Yiu P. Intraoperative epi-aortic scans reduce adverse neurological sequelae in elderly, high risk patients undergoing coronary artery bypass surgery – a propensity matched, cumulative sum control analysis. Heart Lung Circ. 2016; doi:10.1016/j.hlc.2016.11.009.

  7. Newman MF, Mathew JP, Grocott HP, Mackensen GB, Monk T, Welsh-Bohmer KA, et al. Central nervous system injury associated with cardiac surgery. Lancet. 2006;368:694–703.

    Article  Google Scholar 

  8. Yao FSF, Tseng CCA, Ho CYA, Levin SK, Illner P. Cerebral oxygen desaturation is associated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2004;5:552–8.

    Article  Google Scholar 

  9. Murkin JM. Cerebral oximetry: monitoring the brain as the index organ. Anesthesiology. 2011;114(1):12–3. doi:10.1097/ALN.0b013e3181fef5d2.

    Article  PubMed  Google Scholar 

  10. • Kowalczyk AK, Bachar BJ, Liu H. Neuromonitoring during adult cardiac surgery. J Biomed Res. 2016;30(3):171–3. doi:10.7555/JBR.30.20150159. This paper offers a quite exhaustive examination of the major advantages and limitations of the most commonly used neuromonitoring devices during cardiac surgery.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bickler P, Feiner J, Rollins M, Meng L. Tissue oximetry and clinical outcomes. Anesth Analg. 2017;124(1):72–82.

    Article  Google Scholar 

  12. Edmonds HL Jr. Protective effect of neuromonitoring during cardiac surgery. Ann N Y Acad Sci. 2005;1053:12–9.

    Article  Google Scholar 

  13. Goldman S, Sutter F, Ferdinand F, Trace C. Optimizing intraoperative cerebral oxygen delivery using noninvasive cerebral oximetry decreases the incidence of stroke for cardiac surgical patients. Heart Surg Forum. 2004;7(5):E376–81.

    Article  Google Scholar 

  14. Slater JP, Guarino T, Stack J, Vinod K, Bustami RT, Brown JM III, Rodriguez AL, Magovern CJ, Zaubler T, Freundlich K, Parr GV: Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann Thorac Surg 2009; 87:36–44; discussion 44–5.

  15. Taylor K.M. Brain damage during cardiopulmonary bypass Ann Thorac Surg Ann Thorac Surg 1998;65(4 Suppl):S20–S26; discussion S27-8.

  16. Deschamps A, Hall R, Grocott H, Mazer CD, Choi PT, Turgeon AF, et al., Canadian Perioperative Anesthesia Clinical Trials Group. Cerebral oximetry monitoring to maintain normal cerebral oxygen saturation during high-risk cardiac surgery: a randomized controlled feasibility trial. Anesthesiology. 2016;124(4):826–36. doi:10.1097/ALN.0000000000001029.

    Article  CAS  PubMed  Google Scholar 

  17. Murkin JM, Adams SJ, Novick RJ, et al. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. [J] Anesth Analg. 2007;104(1):51–8.

    Article  Google Scholar 

  18. Harilall Y, Adam JK, Biccard BM, et al. The effect of optimizing cerebral tissue oxygen saturation on markers of neurological injury during coronary after bypass graft surgery. [J] Heart Lung Circ. 2014;23(1):68–74.

    Article  Google Scholar 

  19. Tomlin KL, Neitenbach AM, Borg U. Detection of critical cerebral desaturation thresholds by three regional oximeters during hypoxia: a pilot study in healthy volunteers. BMC Anesthesiol. 2017;17(1):6. doi:10.1186/s12871-016-0298-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. de Tournay-Jetté E, Dupuis G, Bherer L, Deschamps A, Cartier R, Denault A. The relationship between cerebral oxygen saturation changes and postoperative cognitive dysfunction in elderly patients after coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth. 2011;25(1):95–104. doi:10.1053/j.jvca.2010.03.019.

    Article  PubMed  Google Scholar 

  21. Kara I, Erkin A, Sacli H, Demirtas M, Percin B, Diler MS, et al. The effects of near-infrared spectroscopy on the neurocognitive functions in the patients undergoing coronary artery bypass grafting with asymptomatic carotid artery disease: a randomized prospective study. Ann Thorac Cardiovasc Surg. 2015;21(6):544–50.

    Article  Google Scholar 

  22. Palmbergen WAC, van Sonderen A, Keyhan-Falsafi AM, et al. Improved perioperative neurological monitoring of coronary artery bypass graft patients reduces the incidence of postoperative delirium: the Haga brain care strategy. [J] Interact Cardiovasc Thorac Surg. 2012;15(4):671–7.

    Article  Google Scholar 

  23. • Moerman A, De Hert S, et al. Curr Opin Anaesthesiol. 2015;28(6):703–9. doi:10.1097/ACO.0000000000000256. This paper suggests the usefulness of intraoperative NIRS in preventing postoperative both neurologic and multiorgans dysfunction; in fact, it provides information about either the brain either the other organs oxygenation.

    Article  CAS  PubMed  Google Scholar 

  24. Greenberg S, Murphy G, Shear T, Patel A, Simpson A, Szokol J, et al. Extracranial contamination in the INVOS 5100C versus the FORE-SIGHT ELITE cerebral oximeter: a prospective observational crossover study in volunteers. Can J Anaesth. 2016;63(1):24–30. doi:10.1007/s12630-015-0451-7.

    Article  PubMed  Google Scholar 

  25. Kato S, Yoshitani K, Kubota Y, Inatomi Y, Ohnishi Y. Effect of posture and extracranial contamination on results of cerebral oximetry by near-infrared spectroscopy. J Anesth. 2017;31(1):103–10. doi:10.1007/s00540-016-2275-1.

    Article  PubMed  Google Scholar 

  26. Zanatta P, Messerotti Benvenuti S, Bosco E, Baldanzi F, Daniela Palomba D, Valfrè C. Multimodal brain monitoring reduces major neurologic complications in cardiac surgery. J Cardiothorac Vasc Anesth. 2011;25(6):1076–85.

    Article  Google Scholar 

  27. Ikeda K, MacLeod DB, Grocott HP, Moretti EW, Ames W, Vacchiano C. The accuracy of a near-infrared spectroscopy cerebral oximetry device and its potential value for estimating jugular venous oxygen saturation. Anesth Analg. 2014;119(6):1381–92. doi:10.1213/ANE.0000000000000463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu LY, Callahan B, Peterss S, Dumfarth J, Tranquilli M, Ziganshin BA, et al. Neuromonitoring using motor and somatosensory evoked potentials in aortic surgery. J Card Surg. 2016;31(6):383–9. doi:10.1111/jocs.12739.

    Article  CAS  PubMed  Google Scholar 

  29. Chui J, Murkin JM, Turkstra T, McKenzie N, Guo L, Quantz MA. Novel automated somatosensory evoked potential (SSEP) monitoring device for detection of intraoperative peripheral nerve injury in cardiac surgery: a clinical feasibility study. J Cardiothorac Vasc Anesth. 2016; doi:10.1053/j.jvca.2016.11.024.

  30. Jacobs MJ, Mess W, Mochtar B, Nijenhuis RJ, Statius van Eps RG, Schurink GW. The value of motor evoked potentials in reducing paraplegia during thoracoabdominal aneurysm repair. J Vasc Surg. 2006;43(2):239–46.

    Article  Google Scholar 

  31. Grocott HP. Monitoring the brain in cardiac surgery – an evolving era for research. [J] Anaesthesia. 2012;67:213–25.

    Article  Google Scholar 

  32. Willingham M, Ben Abdallah A, Gradwohl S, et al. Association between intraoperative electroencephalographic suppression and postoperative mortality. [J] Br J Anaesth. 2014;113(6):1001–8.

    Article  CAS  Google Scholar 

  33. Santarpino G, Fasol R, Sirch J, et al. Impact of bispectral index monitoring on postoperative delirium in patients undergoing aortic surgery. [J] HSR Proc Intensive Care Cardiovasc Anesth. 2011;3(1):47–58.

    CAS  PubMed Central  Google Scholar 

  34. Kertai MD, Pal N, Palanca BJ, et al. Association of perioperative risk factors and cumulative duration of low bispectral index with intermediate-term mortality after cardiac surgery in the B-Unaware trial. Anesthesiology. 2010;112:1116–27.

    Article  Google Scholar 

  35. Bilotta F, Evered LA, Gruenbaum SE. Neurotoxicity of anesthetic drugs: an update. Curr Opin Anaesthesiol. 2017; doi:10.1097/ACO.0000000000000482.

  36. Muhlhofer WG, Zak R, Kamal T, Rizvi B, Sands LP, Yuan M, Zhang X, Leung JM. Burst-suppression ratio underestimates absolute duration of electroencephalogram suppression compared with visual analysis of intraoperative electroencephalogram. Br J Anaesth. 2017;118(5):755–761. doi: 10.1093/bja/aex054.

  37. •• Leslie K, Short TG. Anesthetic depth and long-term survival: an update. Can J Anaesth. 2016;63(2):233–40. doi:10.1007/s12630-015-0490-0. This updated review about the relationship between the depth of anesthesia and poor neurologic outcome addresses the concept of the anesthetic sensitivity as an index of the patients who are at high risk of developing postoperative neurologic dysfunction. The sensitivity to the anesthetic drugs could be responsible for the excessive response to the anesthetic administration in some frail and previously critical patients independently on the direct toxic effects of the anesthetics. In this context, the authors stress the opportunity to maintain an adequate anesthetic plan in order to minimize the side effects of deep anesthesia.

    Article  PubMed  Google Scholar 

  38. Martin KK, Wigginton JB, Babikian VL, Pochay VE, Crittenden MD, Rudolph JL. Intraoperative cerebral high-intensity transient signals and postoperative cognitive function: a systematic review. Am J Surg. 2009;197(1):55–63. doi:10.1016/j.amjsurg.2007.12.060.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Guarracino.

Ethics declarations

Conflict of Interest

Fabio Guarracino, Rubia Baldassarri, and Paolo Zanatta declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cardiovascular Anesthesia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guarracino, F., Baldassarri, R. & Zanatta, P. Current Status of Neuromonitoring in Cardiac Surgery. Curr Anesthesiol Rep 7, 259–264 (2017). https://doi.org/10.1007/s40140-017-0229-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40140-017-0229-2

Keywords

Navigation