Skip to main content

Advertisement

Log in

Cardiac Surgery-Associated Acute Kidney Injury

  • Cardiovascular Anesthesia (J Fassl, Section Editor)
  • Published:
Current Anesthesiology Reports Aims and scope Submit manuscript

Abstract

Cardiac surgery-associated acute kidney injury (CSA-AKI) is a common and important occurrence. It often leads to a cascade of adverse events. It increases the time taken for recovery post-surgery, increases the need for renal replacement therapy, and worsens long-term prognosis. Mere biomarker-positive but creatinine-negative renal injury is consequential and associated with increased risk of complications. Early detection of renal injury and adoption of protective strategies make up the cornerstones of management and improves outcomes. This includes a more molecular approach so as to detect kidney stress, damage, and finally functional loss. Renal replacement therapy forms the bedrock of management strategies to treat CSA-AKI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hu J, Chen R, Liu S, Yu X, Zou J, Ding X. Global incidence and outcomes of adult patients with acute kidney injury after cardiac surgery: a systematic review and meta-analysis. J Cardiothorac Vasc Anesth. 2016;30(1):82–9. doi:10.1053/j.jvca.2015.06.017.

    Article  PubMed  Google Scholar 

  2. Machado MN, Nakazone MA, Maia LN. Prognostic value of acute kidney injury after cardiac surgery according to kidney disease: improving global outcomes definition and staging (KDIGO) criteria. PLoS One. 2014;9(5):e98028. doi:10.1371/journal.pone.0098028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. • Palant CE, Amdur RL, Chawla LS. Long-term consequences of acute kidney injury in the perioperative setting. Curr Opin Anaesthesiol. 2017;30(1):100–4. doi:10.1097/ACO.0000000000000428. A sobering review article on the significant renal as well as extra-renal consequences of AKI

    Article  CAS  PubMed  Google Scholar 

  4. •• Kidney Disease. Improving global outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. 2012(Supplement):1–138. A comprehensive summary on diagnosis and management of acute kidney disease

  5. • Ronco C, Di Lullo L. Cardiorenal syndrome. Heart Fail Clin. 2014;10(2):251–80. doi:10.1016/j.hfc.2013.12.003. An excellent summary on the pathophysiology of cardio-renal syndrome

    Article  PubMed  Google Scholar 

  6. Gaffney AM, Sladen RN. Acute kidney injury in cardiac surgery. Curr Opin Anaesthesiol. 2015;28(1):50–9. doi:10.1097/ACO.0000000000000154.

    Article  PubMed  Google Scholar 

  7. •• Fuhrman DY, Kellum JA. Epidemiology and pathophysiology of cardiac surgery-associated acute kidney injury. Curr Opin Anaesthesiol. 2016:1. doi:10.1097/ACO.0000000000000412.A very recent review article on the pathogenesis of CSA-AKI, highlighting newer concepts such as venous congestion, damage associated molecular patterns and genetics as instigating factors in AKI.

  8. •• Bellomo R, Auriemma S, Fabbri A, D'Onofrio A, Katz N, McCullough PA, et al. The pathophysiology of cardiac surgery-associated acute kidney injury (CSA-AKI). Int J Artif Organs. 2008;31(2):166–78. The original and most comprehensive review on the pathophysiology of CSA-AKI at various stages of the perioperative period

    Article  CAS  Google Scholar 

  9. Ricksten S-E, Bragadottir G, Redfors B. Renal oxygenation in clinical acute kidney injury. Crit Care. 2013;17:221. doi:10.1186/cc12530.

    Article  PubMed  PubMed Central  Google Scholar 

  10. •• O'Neal JB, Shaw AD, Billings FT. Acute kidney injury following cardiac surgery: current understanding and future directions. Critical Care (London, England). 2016;20(1):187. doi:10.1186/s13054-016-1352-z. Complete review on current concepts in CSA-AKI

    Article  Google Scholar 

  11. Azau A, Markowicz P, Corbeau JJ, Cottineau C, Moreau X, Baufreton C, et al. Increasing mean arterial pressure during cardiac surgery does not reduce the rate of postoperative acute kidney injury. Perfusion. 2014;29(6):496–504. doi:10.1177/0267659114527331.

    Article  CAS  PubMed  Google Scholar 

  12. Kanji HD, Schulze CJ, Hervas-Malo M, Wang P, Ross DB, Zibdawi M, et al. Difference between pre-operative and cardiopulmonary bypass mean arterial pressure is independently associated with early cardiac surgery-associated acute kidney injury. J Cardiothorac Surg. 2010;5:71. doi:10.1186/1749-8090-5-71.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lamy A, Devereaux PJ, Prabhakaran D, Taggart DP, Hu S, Paolasso E, et al. Off-pump or on-pump coronary-artery bypass grafting at 30 days. N Engl J Med. 2012;366(16):1489–97. doi:10.1056/NEJMoa1200388.

    Article  CAS  PubMed  Google Scholar 

  14. Lamy A, Devereaux PJ, Prabhakaran D, Taggart DP, Hu S, Straka Z, et al. Five-year outcomes after off-pump or on-pump coronary-artery bypass grafting. N Engl J Med. 2016;375(24):2359–68. doi:10.1056/NEJMoa1601564.

    Article  PubMed  Google Scholar 

  15. Reents W, Hilker M, Börgermann J, Albert M, Plötze K, Zacher M, et al. Acute kidney injury after on-pump or off-pump coronary artery bypass grafting in elderly patients. Ann Thorac Surg. 2014;98(1):9–15. doi:10.1016/j.athoracsur.2014.01.088.

    Article  PubMed  Google Scholar 

  16. Garg AX, Devereaux PJ, Yusuf S, Cuerden MS, Parikh CR, Coca SG, et al. Kidney function after off-pump or on-pump coronary artery bypass graft surgery: a randomized clinical trial. JAMA. 2014;311(21):2191–8. doi:10.1001/jama.2014.4952.

    Article  CAS  PubMed  Google Scholar 

  17. •• Gambardella I, Gaudino M, Ronco C, Lau C, Ivascu N, Girardi LN. Congestive kidney failure in cardiac surgery: the relationship between central venous pressure and acute kidney injury. Interact Cardiovasc Thorac Surg. 2016;23(5):800–5. doi:10.1093/icvts/ivw229. This fascinating paper discusses the relationship between venous hypertension and renal failure. Gambardella and colleagues explain the concept of “kidney congestive failure”.They explain the role of elevated CVP in the cardiac surgery patient and its close link to CSA-AKI

    Article  PubMed  Google Scholar 

  18. Stafford-Smith M, Li Y-J, Mathew JP, Li Y-W, Ji Y, Phillips-Bute BG, et al. Genome-wide association study of acute kidney injury after coronary bypass graft surgery identifies susceptibility loci. Kidney Int. 2015;88(4):823–32. doi:10.1038/ki.2015.161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. • Ronco C, Chawla LS. Glomerular and tubular kidney stress test: new tools for a deeper evaluation of kidney function. Nephron. 2016;134(3):191–4. doi:10.1159/000449235. Very interesting article on the concept of renal functional reserve, how to stress test the kidney, interpret the results and what it means for prognostication both in AKI and CKD

    Article  PubMed  Google Scholar 

  20. • Thakar CV, Arrigain S, Worley S, Yared J-P, Paganini EP. A clinical score to predict acute renal failure after cardiac surgery. JASN. 2005;16(1):162–8. doi:10.1681/ASN.2004040331. This paper describes the best performing risk score to predict renal failure

    Article  PubMed  Google Scholar 

  21. Wijeysundera DN, Karkouti K, Dupuis J-Y, Rao V, Chan CT, Granton JT, et al. Derivation and validation of a simplified predictive index for renal replacement therapy after cardiac surgery. JAMA. 2007;297(16):1801–9. doi:10.1001/jama.297.16.1801.

    Article  CAS  PubMed  Google Scholar 

  22. Mehta RH, Grab JD, O’Brien SM, Bridges CR, Gammie JS, Haan CK, et al. Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery. Circulation. 2006;114(21):2208–16. doi:10.1161/CIRCULATIONAHA.106.635573.

    Article  PubMed  Google Scholar 

  23. Kiers HD, van den Boogaard M, Schoenmakers MC, van der Hoeven JG, van Swieten HA, Heemskerk S, et al. Comparison and clinical suitability of eight prediction models for cardiac surgery-related acute kidney injury. Nephrol Dial Transplant. 2013;28(2):345–51. doi:10.1093/ndt/gfs518.

    Article  PubMed  Google Scholar 

  24. Kristovic D, Horvatic I, Husedzinovic I, Sutlic Z, Rudez I, Baric D, et al. Cardiac surgery-associated acute kidney injury: risk factors analysis and comparison of prediction models. Interact Cardiovasc Thorac Surg. 2015;21(3):366–73. doi:10.1093/icvts/ivv162.

    Article  PubMed  Google Scholar 

  25. Hoste EA, De Corte W. Implementing the kidney disease: improving global outcomes/acute kidney injury guidelines in ICU patients. Curr Opin Crit Care. 2013;19(6):544–53. doi:10.1097/MCC.0000000000000039.

    Article  PubMed  Google Scholar 

  26. Murray PT, Mehta RL, Shaw A, Ronco C, Endre Z, Kellum JA, et al. Potential use of biomarkers in acute kidney injury: report and summary of recommendations from the 10th acute dialysis quality initiative consensus conference. Kidney Int. 2014;85(3):513–21. doi:10.1038/ki.2013.374.

    Article  PubMed  Google Scholar 

  27. •• Kellum JA, Chawla LS. Cell-cycle arrest and acute kidney injury: the light and the dark sides. Nephrol Dial Transplant. 2016;31(1):16–22. doi:10.1093/ndt/gfv130. Kellum argues the concept of lead-time to counter AKI due to early detection with cell cycle arrest biomarkers. The paper summarizes the three major trials leading to the detection and validation of cell cycle arrest biomarkers performed by Kellum’s group. He explains the reasoning and intentions of the cut off points that were used and that are now implemented in clinical bedside tests

    Article  CAS  PubMed  Google Scholar 

  28. Hoste EA, McCullough PA, Kashani K, Chawla LS, Joannidis M, Shaw AD, et al. Derivation and validation of cutoffs for clinical use of cell cycle arrest biomarkers. Nephrol Dial Transplant. 2014;29(11):2054–61. doi:10.1093/ndt/gfu292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw SM, Bell M, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care. 2013;17:R25. doi:10.1186/cc12503.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bihorac A, Chawla LS, Shaw AD, Al-Khafaji A, Davison DL, Demuth GE, et al. Validation of cell-cycle arrest biomarkers for acute kidney injury using clinical adjudication. Am J Respir Crit Care Med. 2014;189(8):932–9. doi:10.1164/rccm.201401-0077OC.

    Article  CAS  PubMed  Google Scholar 

  31. Meersch M, Schmidt C, Aken HV, Martens S, Rossaint J, Singbartl K, et al. Urinary TIMP-2 and IGFBP7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery. PLoS One. 2014;9(3):e93460. doi:10.1371/journal.pone.0093460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Meersch M, Schmidt C, Aken HV, Rossaint J, Görlich D, Stege D, et al. Validation of cell-cycle arrest biomarkers for acute kidney injury after pediatric cardiac surgery. PLoS One. 2014;9(10):e110865. doi:10.1371/journal.pone.0110865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Haase-Fielitz A, Haase M, Devarajan P. Neutrophil gelatinase-associated lipocalin as a biomarker of acute kidney injury: a critical evaluation of current status. Ann Clin Biochem. 2014;51(Pt 3):335–51. doi:10.1177/0004563214521795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. de Geus HR, Ronco C, Haase M, Jacob L, Lewington A, Vincent JL. The cardiac surgery-associated neutrophil gelatinase-associated lipocalin (CSA-NGAL) score: a potential tool to monitor acute tubular damage. J Thorac Cardiovasc Surg. 2016;151(6):1476–81. doi:10.1016/j.jtcvs.2016.01.037.

    Article  CAS  PubMed  Google Scholar 

  35. Tsai TT, Patel UD, Chang TI, Kennedy KF, Masoudi FA, Matheny ME, et al. Contemporary incidence, predictors, and outcomes of acute kidney injury in patients undergoing percutaneous coronary interventions: insights from the NCDR Cath-PCI registry. JACC Cardiovasc Interv. 2014;7(1):1–9. doi:10.1016/j.jcin.2013.06.016.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Marenzi G, Cosentino N, Werba JP, Tedesco CC, Veglia F, Bartorelli AL. A meta-analysis of randomized controlled trials on statins for the prevention of contrast-induced acute kidney injury in patients with and without acute coronary syndromes. Int J Cardiol. 2015;183:47–53. doi:10.1016/j.ijcard.2015.01.046.

    Article  PubMed  Google Scholar 

  37. Pavlidis AN, Jones DA, Sirker A, Mathur A, Smith EJ. Prevention of contrast-induced acute kidney injury after percutaneous coronary intervention for chronic total coronary occlusions. Am J Cardiol. 2015;115(6):844–51. doi:10.1016/j.amjcard.2014.12.047.

    Article  PubMed  Google Scholar 

  38. •• Chau CH, Williams DO. Prevention of contrast-induced renal failure for the interventional cardiologist: table. Circulation: Cardiovascular Interventions. 2016;9(6):e004122. doi:10.1161/CIRCINTERVENTIONS.116.004122. Describes the pathophysiology and preventive strategies to manage contrast induced renal failure

    Article  Google Scholar 

  39. Writing Committee M, Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittl JA, et al. 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Circulation. 2011;124(23):e574–651. doi:10.1161/CIR.0b013e31823ba622.

    Article  Google Scholar 

  40. 2014 ESC/EACTS guidelines on myocardial revascularization: the task force on myocardial revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 35(37):2541–619. doi:10.1093/eurheartj/ehu278.

  41. Nijssen EC, Rennenberg RJ, Nelemans PJ, Essers BA, Janssen MM, Vermeeren MA, et al. Prophylactic hydration to protect renal function from intravascular iodinated contrast material in patients at high risk of contrast-induced nephropathy (AMACING): a prospective, randomised, phase 3, controlled, open-label, non-inferiority trial. Lancet. 2017;389(10076):1312–22. doi:10.1016/S0140-6736(17)30057-0.

    Article  PubMed  Google Scholar 

  42. Brar SS, Aharonian V, Mansukhani P, Moore N, Shen AYJ, Jorgensen M, et al. Haemodynamic-guided fluid administration for the prevention of contrast-induced acute kidney injury: the POSEIDON randomised controlled trial. Lancet. 2014;383(9931):1814–23. doi:10.1016/S0140-6736(14)60689-9.

    Article  PubMed  Google Scholar 

  43. Medalion B, Cohen H, Assali A, Vaknin Assa H, Farkash A, Snir E, et al. The effect of cardiac angiography timing, contrast media dose, and preoperative renal function on acute renal failure after coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2010;139(6):1539–44. doi:10.1016/j.jtcvs.2009.08.042.

    Article  PubMed  Google Scholar 

  44. Ranucci M, Castelvecchio S, La Rovere MT. Surgical and clinical outcome research G. Renal function changes and seasonal temperature in patients undergoing cardiac surgery. Chronobiol Int. 2014;31(2):175–81. doi:10.3109/07420528.2013.836533.

    Article  PubMed  Google Scholar 

  45. Goldstein SL. Fluid management in acute kidney injury. J Intensive Care Med. 2014;29(4):183–9. doi:10.1177/0885066612465816.

    Article  PubMed  Google Scholar 

  46. Chen H, Wu B, Gong D, Liu Z. Fluid overload at start of continuous renal replacement therapy is associated with poorer clinical condition and outcome: a prospective observational study on the combined use of bioimpedance vector analysis and serum N-terminal pro-B-type natriuretic peptide measurement. Crit Care. 2015;19:135. doi:10.1186/s13054-015-0871-3.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Investigators RRTS, Bellomo R, Cass A, Cole L, Finfer S, Gallagher M, et al. An observational study fluid balance and patient outcomes in the randomized evaluation of normal vs. augmented level of replacement therapy trial. Crit Care Med. 2012;40(6):1753–60. doi:10.1097/CCM.0b013e318246b9c6.

    Article  Google Scholar 

  48. Moore E, Tobin A, Reid D, Santamaria J, Paul E, Bellomo R. The impact of fluid balance on the detection, classification and outcome of acute kidney injury after cardiac surgery. J Cardiothorac Vasc Anesth. 2015;29(5):1229–35. doi:10.1053/j.jvca.2015.02.004.

    Article  PubMed  Google Scholar 

  49. Zarychanski R, Abou-Setta AM, Turgeon AF, Houston BL, McIntyre L, Marshall JC, et al. Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: a systematic review and meta-analysis. JAMA. 2013;309(7):678–88. doi:10.1001/jama.2013.430.

    Article  CAS  PubMed  Google Scholar 

  50. Vives M, Callejas R, Duque P, Echarri G, Wijeysundera DN, Hernandez A, et al. Modern hydroxyethyl starch and acute kidney injury after cardiac surgery: a prospective multicentre cohort. Br J Anaesth. 2016;117(4):458–63. doi:10.1093/bja/aew258.

    Article  CAS  PubMed  Google Scholar 

  51. Smith MNA, Best D, Sheppard SV, Smith DC. The effect of mannitol on renal function after cardiopulmonary bypass in patients with established renal dysfunction. Anaesthesia. 2008;63(7):701–4. doi:10.1111/j.1365-2044.2007.05408.x.

    Article  CAS  PubMed  Google Scholar 

  52. Investigators SS. Effect of baseline serum albumin concentration on outcome of resuscitation with albumin or saline in patients in intensive care units: analysis of data from the saline versus albumin fluid evaluation (SAFE) study. BMJ. 2006;333(7577):1044. doi:10.1136/bmj.38985.398704.7C.

    Article  CAS  Google Scholar 

  53. Lee E-H, Kim W-J, Kim J-Y, Chin J-H, Choi D-K, Sim J-Y, et al. Effect of exogenous albumin on the incidence of postoperative acute kidney injury in patients undergoing off-pump coronary artery bypass surgery with a preoperative albumin level of less than 4.0 g/dl. Anesthesiology. 2016;124(5):1001–11. doi:10.1097/ALN.0000000000001051.

    Article  CAS  PubMed  Google Scholar 

  54. Annane D, Siami S, Jaber S, Martin C, Elatrous S, Declere AD, et al. Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. JAMA. 2013;310(17):1809–17. doi:10.1001/jama.2013.280502.

    Article  CAS  PubMed  Google Scholar 

  55. Young P, Bailey M, Beasley R, Henderson S, Mackle D, McArthur C, et al. Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: the SPLIT randomized clinical trial. JAMA. 2015;314(16):1701–10. doi:10.1001/jama.2015.12334.

    Article  CAS  PubMed  Google Scholar 

  56. Shaw AD, Bagshaw SM, Goldstein SL, Scherer LA, Duan M, Schermer CR, et al. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to plasma-Lyte. Ann Surg. 2012;255(5):821–9. doi:10.1097/SLA.0b013e31825074f5.

    Article  PubMed  Google Scholar 

  57. Yunos NM, Bellomo R, Glassford N, Sutcliffe H, Lam Q, Bailey M. Chloride-liberal vs. chloride-restrictive intravenous fluid administration and acute kidney injury: an extended analysis. Intensive Care Med. 2015;41(2):257–64. doi:10.1007/s00134-014-3593-0.

    Article  CAS  PubMed  Google Scholar 

  58. Krajewski ML, Raghunathan K, Paluszkiewicz SM, Schermer CR, Shaw AD. Meta-analysis of high- versus low-chloride content in perioperative and critical care fluid resuscitation. Br J Surg. 2015;102(1):24–36. doi:10.1002/bjs.9651.

    Article  CAS  PubMed  Google Scholar 

  59. •• Romagnoli S, Ricci Z, Ronco C. Therapy of acute kidney injury in the perioperative setting. Curr Opin Anaesthesiol. 2017;30(1):92–9. doi:10.1097/ACO.0000000000000424. This is an exceptional article on current and novel pharmacologic approaches in CSA-AKI. Amongst other things the authors highlight hemodynamic management with emphasis on right ventricular dysfunction and management, pre-emptive renal replacement therapy and mesenchymal stem cell therapy

    Article  CAS  PubMed  Google Scholar 

  60. Sant’Helena BRM, Guarido KL, de Souza P, Crestani S, da Silva-Santos JE. Reduction in renal blood flow following administration of norepinephrine and phenylephrine in septic rats treated with Kir6.1 ATP-sensitive and KCa1.1 calcium-activated K+ channel blockers. Eur J Pharmacol. 2015;765:42–50. doi:10.1016/j.ejphar.2015.08.014.

    Article  CAS  Google Scholar 

  61. Bellomo R, Wan L, May C. Vasoactive drugs and acute kidney injury. Crit Care Med. 2008;36(4 Suppl):S179–86. doi:10.1097/CCM.0b013e318169167f.

    Article  CAS  PubMed  Google Scholar 

  62. Bragadottir G, Redfors B, Ricksten SE. Effects of levosimendan on glomerular filtration rate, renal blood flow, and renal oxygenation after cardiac surgery with cardiopulmonary bypass: a randomized placebo-controlled study. Crit Care Med. 2013;41(10):2328–35. doi:10.1097/CCM.0b013e31828e946a.

    Article  CAS  PubMed  Google Scholar 

  63. Mehta RH, Leimberger JD, van Diepen S, Meza J, Wang A, Jankowich R et al. Levosimendan in patients with left ventricular dysfunction undergoing cardiac surgery. New England Journal of Medicine. 2017;0(0):null. doi:10.1056/NEJMoa1616218.

  64. Miceli A, Romeo F, Glauber M, de Siena PM, Caputo M, Angelini GD. Preoperative anemia increases mortality and postoperative morbidity after cardiac surgery. J Cardiothorac Surg. 2014;9:9050. doi:10.1186/1749-8090-9-137.

    Article  Google Scholar 

  65. Karkouti K, Grocott HP, Hall R, Jessen ME, Kruger C, Lerner AB, et al. Interrelationship of preoperative anemia, intraoperative anemia, and red blood cell transfusion as potentially modifiable risk factors for acute kidney injury in cardiac surgery: a historical multicentre cohort study. Can J Anaesth. 2015;62(4):377–84. doi:10.1007/s12630-014-0302-y.

    Article  PubMed  Google Scholar 

  66. Weltert L, Rondinelli B, Bello R, Falco M, Bellisario A, Maselli D, et al. A single dose of erythropoietin reduces perioperative transfusions in cardiac surgery: results of a prospective single-blind randomized controlled trial. Transfusion. 2015;55(7):1644–54. doi:10.1111/trf.13027.

    Article  CAS  PubMed  Google Scholar 

  67. https://clinicaltrials.gov/ct2/show/NCT02637102. The UK CAVIAR Study.

  68. Khan UA, Coca SG, Hong K, Koyner JL, Garg AX, Passik CS, et al. Blood transfusions are associated with urinary biomarkers of kidney injury in cardiac surgery. J Thorac Cardiovasc Surg. 2014;148(2):726–32. doi:10.1016/j.jtcvs.2013.09.080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Patel NN, Rogers CA, Angelini GD, Murphy GJ. Pharmacological therapies for the prevention of acute kidney injury following cardiac surgery: a systematic review. Heart Fail Rev. 2011;16(6):553–67. doi:10.1007/s10741-011-9235-5.

    Article  CAS  PubMed  Google Scholar 

  70. Landoni G, Biondi-Zoccai GGL, Marino G, Bove T, Fochi O, Maj G, et al. Fenoldopam reduces the need for renal replacement therapy and in-hospital death in cardiovascular surgery: a meta-analysis. J Cardiothorac Vasc Anesth. 2008;22(1):27–33. doi:10.1053/j.jvca.2007.07.015.

    Article  CAS  PubMed  Google Scholar 

  71. Sward K, Valsson F, Odencrants P, Samuelsson O, Ricksten SE. Recombinant human atrial natriuretic peptide in ischemic acute renal failure: a randomized placebo-controlled trial. Crit Care Med. 2004;32(6):1310–5.

    Article  Google Scholar 

  72. Dyke CM, Bhatia D, Aronson S, Moazami N, Mentzer RM Jr. Perioperative nesiritide and possible renal protection in patients with moderate to severe kidney dysfunction. J Thorac Cardiovasc Surg. 2008;136(5):1369–70. doi:10.1016/j.jtcvs.2007.12.079.

    Article  PubMed  Google Scholar 

  73. Woo EBC, Tang ATM, el-Gamel A, Keevil B, Greenhalgh D, Patrick M, et al. Dopamine therapy for patients at risk of renal dysfunction following cardiac surgery: science or fiction? European Journal of Cardio-Thoracic Surgery: Official Journal of the European Association for Cardio-Thoracic Surgery. 2002;22(1):106–11.

    Article  Google Scholar 

  74. Mahesh B, Yim B, Robson D, Pillai R, Ratnatunga C, Pigott D. Does furosemide prevent renal dysfunction in high-risk cardiac surgical patients? Results of a double-blinded prospective randomised trial. European Journal of Cardio-Thoracic Surgery: Official Journal of the European Association for Cardio-Thoracic Surgery. 2008;33(3):370–6. doi:10.1016/j.ejcts.2007.12.030.

    Article  Google Scholar 

  75. Bagshaw SM, Delaney A, Haase M, Ghali WA, Bellomo R. Loop diuretics in the management of acute renal failure: a systematic review and meta-analysis. Crit Care Resusc. 2007;9(1):60–8.

    PubMed  Google Scholar 

  76. Bagshaw SM, Bellomo R, Kellum JA. Oliguria, volume overload, and loop diuretics. Crit Care Med. 2008;36(4 Suppl):S172–8. doi:10.1097/CCM.0b013e318168c92f.

    Article  PubMed  Google Scholar 

  77. Sandilands EA, Cameron S, Paterson F, Donaldson S, Briody L, Crowe J, et al. Mechanisms for an effect of acetylcysteine on renal function after exposure to radio-graphic contrast material: study protocol. BMC Clin Pharmacol. 2012;12:3. doi:10.1186/1472-6904-12-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Parotto M, Wijeysundera DN. N-acetylcysteine to reduce mortality in cardiac surgery. In: Landoni G, Pisano A, Zangrillo A, Bellomo R, editors. Reducing Mortality in Acute Kidney Injury. Springer International Publishing; 2016. p. 101–6.

  79. Mei M, Zhao H-W, Pan Q-G, Pu Y-M, Tang M-Z, Shen B-B. Efficacy of N-acetylcysteine in preventing acute kidney injury after cardiac surgery: a meta-analysis study. J Investig Surg. 2017:1–10. doi:10.1080/08941939.2016.1269853.

  80. Gebhard DJ, Akcan-Arikan A. You can teach an old drug new tricks—aminophylline for cardiac surgery–associated acute kidney injury*. Pediatr Crit Care Med. 2016;17(8):798–9. doi:10.1097/PCC.0000000000000867.

    Article  PubMed  Google Scholar 

  81. Haase M, Haase-Fielitz A, Bellomo R, Devarajan P, Story D, Matalanis G, et al. Sodium bicarbonate to prevent increases in serum creatinine after cardiac surgery: a pilot double-blind, randomized controlled trial. Crit Care Med. 2009;37(1):39–47. doi:10.1097/CCM.0b013e318193216f.

    Article  CAS  PubMed  Google Scholar 

  82. Soh S, Song JW, Shim JK, Kim JH, Kwak YL. Sodium bicarbonate does not prevent postoperative acute kidney injury after off-pump coronary revascularization: a double-blinded randomized controlled trial. Br J Anaesth. 2016;117(4):450–7. doi:10.1093/bja/aew256.

    Article  CAS  PubMed  Google Scholar 

  83. Argalious M, Xu M, Sun Z, Smedira N, Koch CG. Preoperative statin therapy is not associated with a reduced incidence of postoperative acute kidney injury after cardiac surgery. Anesth Analg. 2010;111(2):324–30. doi:10.1213/ANE.0b013e3181d8a078.

    Article  CAS  PubMed  Google Scholar 

  84. Prowle JR, Calzavacca P, Licari E, Ligabo EV, Echeverri JE, Haase M, et al. Pilot double-blind, randomized controlled trial of short-term atorvastatin for prevention of acute kidney injury after cardiac surgery. Nephrology (Carlton). 2012;17(3):215–24. doi:10.1111/j.1440-1797.2011.01546.x.

    Article  CAS  Google Scholar 

  85. Ji F, Li Z, Young JN, Yeranossian A, Liu H. Post-bypass dexmedetomidine use and postoperative acute kidney injury in patients undergoing cardiac surgery with cardiopulmonary bypass. PLoS One. 2013;8(10):e77446. doi:10.1371/journal.pone.0077446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xue FS, Liu GP, Sun C. Is nadir oxygen delivery on cardiopulmonary bypass an independent risk factor for acute kidney injury after cardiac surgery? Ann Thorac Surg. 2016;101(4):1631. doi:10.1016/j.athoracsur.2015.10.045.

    Article  PubMed  Google Scholar 

  87. de Somer F, Mulholland JW, Bryan MR, Aloisio T, Van Nooten GJ, Ranucci M. O2 delivery and CO2 production during cardiopulmonary bypass as determinants of acute kidney injury: time for a goal-directed perfusion management? Critical Care (London, England). 2011;15(4):R192. doi:10.1186/cc10349.

    Article  PubMed Central  Google Scholar 

  88. Magruder JT, Crawford TC, Harness HL, Grimm JC, Suarez-Pierre A, Wierschke C, et al. A pilot goal-directed perfusion initiative is associated with less acute kidney injury after cardiac surgery. J Thorac Cardiovasc Surg. 2017;153(1):118-25.e1. doi:10.1016/j.jtcvs.2016.09.016.

    Article  Google Scholar 

  89. Milano AD, Dodonov M, Van Oeveren W, Onorati F, Gu YJ, Tessari M, et al. Pulsatile cardiopulmonary bypass and renal function in elderly patients undergoing aortic valve surgerydagger. Eur J Cardiothorac Surg. 2015;47(2):291–298; discussion 8. doi:10.1093/ejcts/ezu136.

    Article  PubMed  Google Scholar 

  90. Presta P, Onorati F, Fuiano L, Mastroroberto P, Santarpino G, Tozzo C, et al. Can pulsatile cardiopulmonary bypass prevent perioperative renal dysfunction during myocardial revascularization in elderly patients? Nephron Clin Pract. 2009;111(4):c229–35. doi:10.1159/000208991.

    Article  PubMed  Google Scholar 

  91. Hausenloy DJ, Candilio L, Evans R, Ariti C, Jenkins DP, Kolvekar S, et al. Remote ischemic preconditioning and outcomes of cardiac surgery. N Engl J Med. 2015;373(15):1408–17. doi:10.1056/NEJMoa1413534.

    Article  CAS  PubMed  Google Scholar 

  92. Hu J, Liu S, Jia P, Xu X, Song N, Zhang T, et al. Protection of remote ischemic preconditioning against acute kidney injury: a systematic review and meta-analysis. Crit Care. 2016;20(1):111. doi:10.1186/s13054-016-1272-y.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Meersch M, Schmidt C, Hoffmeier A, Aken HV, Wempe C, Gerss J, et al. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med. 2017:1–11. doi:10.1007/s00134-016-4670-3.

  94. Mazzeffi MA, Stafford P, Wallace K, Bernstein W, Deshpande S, Odonkor P, et al. Intra-abdominal hypertension and postoperative kidney dysfunction in cardiac surgery patients. J Cardiothorac Vasc Anesth. 2016;30(6):1571–7. doi:10.1053/j.jvca.2016.05.028.

    Article  PubMed  Google Scholar 

  95. •• Ronco C, Ricci Z, De Backer D, Kellum JA, Taccone FS, Joannidis M, et al. Renal replacement therapy in acute kidney injury: controversy and consensus. Crit Care. 2015;19:146. doi:10.1186/s13054-015-0850-8. This paper summarises the evidence surrounding renal replacement theraphy

    Article  PubMed  PubMed Central  Google Scholar 

  96. García-Fernández N, Pérez-Valdivieso JR, Bes-Rastrollo M, Vives M, Lavilla J, Herreros J, et al. Timing of renal replacement therapy after cardiac surgery: a retrospective multicenter Spanish cohort study. Blood Purif. 2011;32(2):104–11. doi:10.1159/000324195.

    Article  PubMed  Google Scholar 

  97. Karvellas CJ, Farhat MR, Sajjad I, Mogensen SS, Leung AA, Wald R, et al. A comparison of early versus late initiation of renal replacement therapy in critically ill patients with acute kidney injury: a systematic review and meta-analysis. Crit Care. 2011;15:R72. doi:10.1186/cc10061.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Liu Y, Davari-Farid S, Arora P, Porhomayon J, Nader ND. Early versus late initiation of renal replacement therapy in critically ill patients with acute kidney injury after cardiac surgery: a systematic review and meta-analysis. J Cardiothorac Vasc Anesth. 2014;28(3):557–63. doi:10.1053/j.jvca.2013.12.030.

    Article  PubMed  Google Scholar 

  99. Zarbock A, Kellum JA, Schmidt C, Van Aken H, Wempe C, Pavenstädt H, et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the ELAIN randomized clinical trial. JAMA. 2016;315(20):2190–9. doi:10.1001/jama.2016.5828.

    Article  CAS  Google Scholar 

  100. Rabindranath K, Adams J, Macleod AM, Muirhead N. Intermittent versus continuous renal replacement therapy for acute renal failure in adults. Cochrane Database Syst Rev. 2007;3:CD003773. doi:10.1002/14651858.CD003773.pub3.

    Article  Google Scholar 

  101. Schneider AG, Bellomo R, Bagshaw SM, Glassford NJ, Lo S, Jun M, et al. Choice of renal replacement therapy modality and dialysis dependence after acute kidney injury: a systematic review and meta-analysis. Intensive Care Med. 2013;39(6):987–97. doi:10.1007/s00134-013-2864-5.

    Article  CAS  PubMed  Google Scholar 

  102. Ronco C, Bellomo R, Homel P, Brendolan A, Dan M, Piccinni P, et al. Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. Lancet. 2000;356(9223):26–30. doi:10.1016/S0140-6736(00)02430-2.

    Article  CAS  PubMed  Google Scholar 

  103. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med. 2008;359(1):7–20. doi:10.1056/NEJMoa0802639.

  104. du Cheyron D, Bouchet B, Bruel C, Daubin C, Ramakers M, Charbonneau P. Antithrombin supplementation for anticoagulation during continuous hemofiltration in critically ill patients with septic shock: a case-control study. Crit Care. 2006;10:R45. doi:10.1186/cc4853.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Hirsh J, Warkentin TE, Shaughnessy SG, Anand SS, Halperin JL, Raschke R, et al. HEparin and low-molecular-weight heparin mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety. Chest. 2001;119(1_suppl):64S–94S. doi:10.1378/chest.119.1_suppl.64S.

    Article  CAS  PubMed  Google Scholar 

  106. Atiq F, PMLAvd B, FWG L, Tv G, Versmissen J. A systematic review on the accumulation of prophylactic dosages of low-molecular-weight heparins (LMWHs) in patients with renal insufficiency. Eur J Clin Pharmacol. 2015;71(8):921–9. doi:10.1007/s00228-015-1880-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hetzel GR, Schmitz M, Wissing H, Ries W, Schott G, Heering PJ, et al. Regional citrate versus systemic heparin for anticoagulation in critically ill patients on continuous venovenous haemofiltration: a prospective randomized multicentre trial. Nephrol Dial Transplant. 2011;26(1):232–9. doi:10.1093/ndt/gfq575.

    Article  CAS  PubMed  Google Scholar 

  108. Morabito S, Pistolesi V, Tritapepe L, Zeppilli L, Polistena F, Strampelli E, et al. Regional citrate anticoagulation in cardiac surgery patients at high risk of bleeding: a continuous veno-venous hemofiltration protocol with a low concentration citrate solution. Crit Care. 2012;16:R111. doi:10.1186/cc11403.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Gritters M, Grooteman MP, Schoorl M, Schoorl M, Bartels PC, Scheffer PG, et al. Citrate anticoagulation abolishes degranulation of polymorphonuclear cells and platelets and reduces oxidative stress during haemodialysis. Nephrol Dial Transplant. 2006;21(1):153–9. doi:10.1093/ndt/gfi069.

    Article  CAS  PubMed  Google Scholar 

  110. De Vico P, Messino V, Tartaglione A, Beccaris C, Buonomo C, Talarico D, et al. Safety and efficacy of citrate anti-coagulation continuous renal replacement therapies in post-cardiac surgery patients with liver dysfunction. Ther Apher Dial. 2015;19(3):272–8. doi:10.1111/1744-9987.12280.

    Article  CAS  PubMed  Google Scholar 

  111. Schilder L, Nurmohamed SA, Bosch FH, Purmer IM, den Boer SS, Kleppe CG, et al. Citrate anticoagulation versus systemic heparinisation in continuous venovenous hemofiltration in critically ill patients with acute kidney injury: a multi-center randomized clinical trial. Crit Care. 2014;18:472. doi:10.1186/s13054-014-0472-6.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Lameire N, Kellum JA. Contrast-induced acute kidney injury and renal support for acute kidney injury: a KDIGO summary (part 2). Crit Care. 2013;17:205. doi:10.1186/cc11455.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Fischer.

Ethics declarations

Conflict of Interest

The authors declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cardiovascular Anesthesia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, S., Salaunkey, K. Cardiac Surgery-Associated Acute Kidney Injury. Curr Anesthesiol Rep 7, 247–258 (2017). https://doi.org/10.1007/s40140-017-0224-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40140-017-0224-7

Keywords

Navigation