Skip to main content

Advertisement

Log in

Inhalational Anesthetic Agents and Their Effects on Cancer Cell Biology

  • Cancer Anesthesia (B Riedel, Section Editor)
  • Published:
Current Anesthesiology Reports Aims and scope Submit manuscript

Abstract

An improved understanding of the cellular mechanisms that account for the protective effect of inhalational anesthetics on tissues subjected to ischemia–reperfusion injury has led some to question whether a similar survival advantage may be afforded to cancer cells in patients undergoing surgery. Such an effect would be potentially detrimental to long-term cancer outcomes. Anesthetic-induced activation of hypoxia-inducible factors and upstream cell signaling pathways such as PI3K/Akt/mTOR appear to underpin the adaptive and pro-survival responses of cells to potentially lethal injuries. These same pathways are heavily implicated in malignancy and metastasis and their activity is associated with poor prognosis in most human solid cancers. This review gives an account of the manner in which inhalational anesthetics amplify cell signaling and induce transcriptional modifications to a variety of cell types, with a particular focus on how this relates to cancer cell biology and the various hallmarks of malignancy such as angiogenesis, cell proliferation, metabolic adaptation, invasion, and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

Akt:

Protein kinase B

ANG-1:

Angiopoietin 1

APAF-1:

Apoptotic protease activating factor 1

ATP:

Adenosine triphosphate

CA-9:

Carbonic anhydrase IX

cAMP:

Cyclic adenosine monophosphate

CDKI:

Cyclin-dependent kinase inhibitor

CREB:

Cyclic adenosine monophosphate response element-binding protein

CXCR-4:

Chemokine receptor 4

CYTIP:

Cytohesin 1 interacting protein

EGFR:

Epidermal growth factor receptor

ERK:

Extracellular signal-related kinase

FdG-PET:

18F-fluorodeoxyglucose positron-emission tomography

FOXO:

Forkhead box O

GLUT-1:

Glucose transporter 1

HIF:

Hypoxia-inducible factor

HK-1:

Hexokinase 1

HO-1:

Heme oxygenase 1

IL-1β:

Interleukin-1 beta

iNOS:

Inducible nitric oxide synthase

JMY:

Junction mediating and regulatory protein, p53 cofactor

KATP :

Adenosine triphosphate regulated potassium channel

LOX:

Lysyl oxidase

LOXL-2:

Lysyl oxidase-like 2

MAPK:

Mitogen-activated protein kinase

MCT-4:

Monocarboxylate transporter 4

MEK:

Mitogen-activated protein kinase/extracellular signal-related kinase

mmHg:

Millimeters of mercury

MMP:

Matrix metalloproteinase

mRNA:

Messenger ribonucleic acid

mTOR:

Mammalian target of rapamycin

MUC-1:

Mucin-1

NFκB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

p-Akt:

Phosphorylated Akt

PC:

Prostate cancer

PDGF-β:

Platelet-derived growth factor beta

PFK-1:

Phosphofructokinase 1

PHD:

Prolyl hydroxylase domain

PI3K:

Phosphoinositide 3-kinase

PIK3CA:

Phosphoinositide 3-kinase-catalytic alpha

PTEN:

Phosphatase and tensin homologue

RCC:

Renal cell carcinoma

RhoA:

Ras homolog gene family, member A

ROCK:

Rho-associated coiled coil-containing protein kinase

SDF-1α:

Stromal-derived factor 1 alpha

siRNA:

Short interfering ribonucleic acid

TGF-α:

Transforming growth factor alpha

TNF-α:

Tumor necrosis factor alpha

TWIST:

Twist-related protein

VEGF:

Vascular endothelial growth factor

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Shapiro J, Jersky J, Katzav S, Feldman M, Segal S. Anesthetic drugs accelerate the progression of postoperative metastases of mouse tumors. J Clin Invest. 1981;68(3):678–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kersten JR, Schmeling TJ, Pagel PS, Gross GJ, Warltier DC. Isoflurane mimics ischemic preconditioning via activation of K(ATP) channels: reduction of myocardial infarct size with an acute memory phase. Anesthesiology. 1997;87(2):361–70.

    Article  CAS  PubMed  Google Scholar 

  3. Schlack W, Preckel B, Stunneck D, Thamer V. Effects of halothane, enflurane, isoflurane, sevoflurane and desflurane on myocardial reperfusion injury in the isolated rat heart. Br J Anaesth. 1998;81(6):913–9.

    Article  CAS  PubMed  Google Scholar 

  4. Obal D, Dettwiler S, Favoccia C, Scharbatke H, Preckel B, Schlack W. The influence of mitochondrial KATP-channels in the cardioprotection of preconditioning and postconditioning by sevoflurane in the rat in vivo. Anesth Analg. 2005;101(5):1252–60.

    Article  CAS  PubMed  Google Scholar 

  5. Tavare AN, Perry NJ, Benzonana LL, Takata M, Ma D. Cancer recurrence after surgery: direct and indirect effects of anesthetic agents. Int J Cancer. 2012;130(6):1237–50.

    Article  CAS  PubMed  Google Scholar 

  6. Bland J, Lowenstein E. Halothane-induced decrease in experimental myocardial ischemia in the non-failing canine heart. Anesthesiology. 1976;45(3):287–93.

    Article  CAS  PubMed  Google Scholar 

  7. Davis R, DeBoer L, Rude R, Lowenstein E, Maroko P. The effect of halothane anesthesia on myocardial necrosis, hemodynamic performance, and regional myocardial blood flow in dogs following coronary artery occlusion. Anesthesiology. 1983;59(5):402–11.

    Article  CAS  PubMed  Google Scholar 

  8. Redel A, Lange M, Jazbutyte V, et al. Activation of mitochondrial large-conductance calcium-activated K+ channels via protein kinase A mediates desflurane-induced preconditioning. Anesth Analg. 2008;106(2):384–91.

    Article  CAS  PubMed  Google Scholar 

  9. Pain T, Yang XM, Critz SD, et al. Opening of mitochondrial K(ATP) channels triggers the preconditioned state by generating free radicals. Circ Res. 2000;87(6):460–6.

    Article  CAS  PubMed  Google Scholar 

  10. Zaugg M, Lucchinetti E, Spahn DR, Pasch T, Schaub MC. Volatile anesthetics mimic cardiac preconditioning by priming the activation of mitochondrial K(ATP) channels via multiple signaling pathways. Anesthesiology. 2002;97(1):4–14.

    Article  CAS  PubMed  Google Scholar 

  11. Toller WG, Kersten JR, Gross ER, Pagel PS, Warltier DC. Isoflurane preconditions myocardium against infarction via activation of inhibitory guanine nucleotide binding proteins. Anesthesiology. 2000;92(5):1400–7.

    Article  CAS  PubMed  Google Scholar 

  12. Sedlic F, Pravdic D, Ljubkovic M, Marinovic J, Stadnicka A, Bosnjak Z. Differences in production of reactive oxygen species and mitochondrial uncoupling as events in the preconditioning signaling cascade between desflurane and sevoflurane. Anesth Analg. 2009;109(2):405–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hanouz J, Zhu L, Lemoine S, et al. Reactive oxygen species mediate sevoflurane-and desflurane-induced preconditioning in isolated human right atria in vitro. Anesth Analg. 2007;105(6):1534–9.

    Article  CAS  PubMed  Google Scholar 

  14. Riess M, Kevin L, McCormick J, Jiang M, Rhodes S, Stowe D. Anesthetic preconditioning: the role of free radicals in sevoflurane-induced attenuation of mitochondrial electron transport in Guinea pig isolated hearts. Anesth Analg. 2005;100(1):46–53.

    Article  CAS  PubMed  Google Scholar 

  15. Müllenheim J, Ebel D, Frässdorf J, Preckel B, Thämer V, Schlack W. Isoflurane preconditions myocardium against infarction via release of free radicals. Anesthesiology. 2002;96(4):934–40.

    Article  PubMed  Google Scholar 

  16. • Wu L, Zhao H, Wang T, Pac-Soo C, Ma D. Cellular signaling pathways and molecular mechanisms involving inhalational anesthetics-induced organoprotection. J Anesth. 2014;28(5):740–58. A comprehensive summary of the molecular mechanisms and cell signaling pathways involved in cardiac, neuro and renal protection by inhalational anesthetics, summarizing pertinent basic science studies and clinical evidence.

  17. Hieber S, Huhn R, Hollmann M, Weber N, Preckel B. Hypoxia-inducible factor 1 and related gene products in anaesthetic-induced preconditioning. Eur J Anaesthesiol. 2009;26(3):201–6.

    Article  CAS  PubMed  Google Scholar 

  18. Dirnagl U, Becker K, Meisel A. Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol. 2009;8(4):398–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Semenza G. HIF-1 and human disease: one highly involved factor. Genes Dev. 2000;14(16):1983–91.

    CAS  PubMed  Google Scholar 

  20. Semenza G. HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell. 2001;107(1):1–3.

    Article  CAS  PubMed  Google Scholar 

  21. • Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci. 2012;33(4):207–14. A recent review of the role of Hypoxia-inducible factors in cancer, written by the scientist who first discovered HIF-1.

  22. Li Q, Wang X, Yang Y, Su D. Up-regulation of hypoxia inducible factor 1alpha by isoflurane in Hep3B cells. Anesthesiology. 2006;105(6):1211–9.

    Article  CAS  PubMed  Google Scholar 

  23. Ma D, Lim T, Xu J, et al. Xenon preconditioning protects against renal ischemic-reperfusion injury via HIF-1alpha activation. J Am Soc Nephrol. 2009;20(4):713–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. • Ye Z, Guo Q, Xia P, Wang N, Wang E, Yuan Y. Sevoflurane postconditioning involves an up-regulation of HIF-1alpha and HO-1 expression via PI3K/Akt pathway in a rat model of focal cerebral ischemia. Brain Res. 2012;1463:63–74. An important study confirming that sevoflurane organoprotection, like isoflurane, occurs via the PI3K/Akt pathway and involves up-regulation of HIF-1α.

  25. Semenza G. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721–32.

    Article  CAS  PubMed  Google Scholar 

  26. Rankin E, Giaccia A. The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ. 2008;15(4):678–85.

    Article  CAS  PubMed  Google Scholar 

  27. Brown J, Wilson W. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 2004;4(6):437–47.

    Article  CAS  PubMed  Google Scholar 

  28. Jiang BH, Jiang G, Zheng JZ, Lu Z, Hunter T, Vogt PK. Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ. 2001;12(7):363–9.

    CAS  PubMed  Google Scholar 

  29. Minet E, Arnould T, Michel G, et al. ERK activation upon hypoxia: involvement in HIF-1 activation. FEBS Lett. 2000;468(1):53–8.

    Article  CAS  PubMed  Google Scholar 

  30. Frede S, Berchner-Pfannschmidt U, Fandrey J. Regulation of hypoxia-inducible factors during inflammation. Methods Enzymol. 2007;435:405–19.

    CAS  PubMed  Google Scholar 

  31. Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov. 2014;13(2):140–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Blancher C, Moore J, Robertson N, Harris A. Effects of ras and von Hippel-Lindau (VHL) gene mutations on hypoxia-inducible factor (HIF)-1alpha, HIF-2alpha, and vascular endothelial growth factor expression and their regulation by the phosphatidylinositol 3′-kinase/Akt signaling pathway. Cancer Res. 2001;61(19):7349–55.

    CAS  PubMed  Google Scholar 

  33. Porta C, Figlin R. Phosphatidylinositol-3-kinase/Akt signaling pathway and kidney cancer, and the therapeutic potential of phosphatidylinositol-3-kinase/Akt inhibitors. J Urol. 2009;182(6):2569–77.

    Article  CAS  PubMed  Google Scholar 

  34. Majumder P, Febbo P, Bikoff R, et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med. 2004;10(6):594–601.

    Article  CAS  PubMed  Google Scholar 

  35. Zhong H, Chiles K, Feldser D, et al. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 2000;60(6):1541–5.

    CAS  PubMed  Google Scholar 

  36. Airley RE, Mobasheri A. Hypoxic regulation of glucose transport, anaerobic metabolism and angiogenesis in cancer: novel pathways and targets for anticancer therapeutics. Chemotherapy. 2007;53(4):233–56.

    Article  CAS  PubMed  Google Scholar 

  37. Camara O, Kavallaris A, Nöschel H, Rengsberger M, Jörke C, Pachmann K. Seeding of epithelial cells into circulation during surgery for breast cancer: the fate of malignant and benign mobilized cells. World J Surg Oncol. 2006;4:67.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Eschwege P, Dumas F, Blanchet P, et al. Haematogenous dissemination of prostatic epithelial cells during radical prostatectomy. Lancet. 1995;346(8989):1528–30.

    Article  CAS  PubMed  Google Scholar 

  39. Pantel K, Alix-Panabieres C, Riethdorf S. Cancer micrometastases. Nat Rev Clin Oncol. 2009;6(6):339–51.

    Article  CAS  PubMed  Google Scholar 

  40. Gottschalk A, Sharma S, Ford J, Durieux M, Tiouririne M. Review article: the role of the perioperative period in recurrence after cancer surgery. Anesth Analg. 2010;110(6):1636–43.

    Article  PubMed  Google Scholar 

  41. Paez D, Labonte MJ, Bohanes P, et al. Cancer dormancy: a model of early dissemination and late cancer recurrence. Clin Cancer Res. 2012;18(3):645–53.

    Article  PubMed  Google Scholar 

  42. Snyder G, Greenberg S. Effect of anaesthetic technique and other perioperative factors on cancer recurrence. Br J Anaesth. 2010;105(2):106–15.

    Article  CAS  PubMed  Google Scholar 

  43. Wang C, Weihrauch D, Schwabe D, et al. Extracellular signal-regulated kinases trigger isoflurane preconditioning concomitant with upregulation of hypoxia-inducible factor-1alpha and vascular endothelial growth factor expression in rats. Anesth Analg. 2006;103(2):281–8.

    Article  CAS  PubMed  Google Scholar 

  44. Chiari P, Bienengraeber M, Pagel P, Krolikowski J, Kersten J, Warltier D. Isoflurane protects against myocardial infarction during early reperfusion by activation of phosphatidylinositol-3-kinase signal transduction: evidence for anesthetic-induced postconditioning in rabbits. Anesthesiology. 2005;102(1):102–9.

    Article  CAS  PubMed  Google Scholar 

  45. Raphael J, Rivo J, Gozal Y. Isoflurane-induced myocardial preconditioning is dependent on phosphatidylinositol-3-kinase/Akt signalling. Br J Anaesth. 2005;95(6):756–63.

    Article  CAS  PubMed  Google Scholar 

  46. Raphael J, Zuo Z, Abedat S, Beeri R, Gozal Y. Isoflurane preconditioning decreases myocardial infarction in rabbits via up-regulation of hypoxia inducible factor 1 that is mediated by mammalian target of rapamycin. Anesthesiology. 2008;108(3):415–25.

    Article  CAS  PubMed  Google Scholar 

  47. •• Benzonana LL, Perry NJ, Watts HR, et al. Isoflurane, a commonly used volatile anesthetic, enhances renal cancer growth and malignant potential via the hypoxia-inducible factor cellular signaling pathway in vitro. Anesthesiology. 2013;119(3):593–605. The first study to demonstrate that the up-regulation of PI3K/Akt and HIF-1α in cancer cells by isoflurane leads to significant enhancement of cell malignancy, including increased cell proliferation, migration and invasion.

  48. •• Huang H, Benzonana LL, Zhao H, et al. Prostate cancer cell malignancy via modulation of HIF-1alpha pathway with isoflurane and propofol alone and in combination. Br J Cancer. 2014;111(7):1338–49. Isoflurane up-regulates PI3K/Akt and HIF-1α in prostate cancer cells, enhancing proliferation, migration and levels of VEGF and increasing resistance to the chemotherapy agent, docetaxel. Conversely, propofol inhibited HIF-1α activation and blocked the effects of isoflurane.

  49. Yao YT, Fang NX, Shi CX, Li LH. Sevoflurane postconditioning protects isolated rat hearts against ischemia-reperfusion injury. Chin Med J. 2010;123(10):1320–8.

    CAS  PubMed  Google Scholar 

  50. Shi QY, Zhang SJ, Liu L, et al. Sevoflurane promotes the expansion of glioma stem cells through activation of hypoxia-inducible factors in vitro. Br J Anaesth. 2014;114(5):825–30.

    Article  CAS  PubMed  Google Scholar 

  51. Zhu L, Lemoine S, Babatasi G, et al. Sevoflurane- and desflurane-induced human myocardial post-conditioning through Phosphatidylinositol-3-kinase/Akt signalling. Acta Anaesthesiol Scand. 2009;53(7):949–56.

    Article  CAS  PubMed  Google Scholar 

  52. Toma O, Weber NC, Wolter JI, Obal D, Preckel B, Schlack W. Desflurane preconditioning induces time-dependent activation of protein kinase C epsilon and extracellular signal-regulated kinase 1 and 2 in the rat heart in vivo. Anesthesiology. 2004;101(6):1372–80.

    Article  CAS  PubMed  Google Scholar 

  53. Limatola V, Ward P, Cattano D, et al. Xenon preconditioning confers neuroprotection regardless of gender in a mouse model of transient middle cerebral artery occlusion. Neuroscience. 2010;165(3):874–81.

    Article  CAS  PubMed  Google Scholar 

  54. Averous J, Proud C. When translation meets transformation: the mTOR story. Oncogene. 2006;25(48):6423–35.

    Article  CAS  PubMed  Google Scholar 

  55. Patel S, Simon M. Biology of hypoxia-inducible factor-2alpha in development and disease. Cell Death Differ. 2008;15(4):628–34.

    Article  CAS  PubMed  Google Scholar 

  56. Huang L. Carrot and stick: HIF-alpha engages c-Myc in hypoxic adaptation. Cell Death Differ. 2008;15(4):672–7.

    Article  CAS  PubMed  Google Scholar 

  57. Gunaratnam L, Morley M, Franovic A, et al. Hypoxia inducible factor activates the transforming growth factor-alpha/epidermal growth factor receptor growth stimulatory pathway in VHL(-/-) renal cell carcinoma cells. J Biol Chem. 2003;278(45):44966–74.

    Article  CAS  PubMed  Google Scholar 

  58. Yerushalmi R, Woods R, Ravdin PM, Hayes MM, Gelmon KA. Ki67 in breast cancer: prognostic and predictive potential. Lancet Oncol. 2010;11(2):174–83.

    Article  CAS  PubMed  Google Scholar 

  59. •• Luo X, Zhao H, Hennah L, et al. Impact of isoflurane on malignant capability of ovarian cancer in vitro. Br J Anaesth. 2014;114:831–89. Confirms the pro-malignancy characteristics of isoflurane, this time in ovarian cancer cells, as determined by significant increases in proliferation, cell cycle progression, cell migration, expression of angiogenic factors and matrix metalloproteinases.

  60. Fong G. Regulation of angiogenesis by oxygen sensing mechanisms. J Mol Med. 2009;87(6):549–60.

    Article  CAS  PubMed  Google Scholar 

  61. Semenza G. Regulation of hypoxia-induced angiogenesis: a chaperone escorts VEGF to the dance. J Clin Invest. 2001;108(1):39–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kelly BD, Hackett SF, Hirota K, et al. Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res. 2003;93(11):1074–81.

    Article  CAS  PubMed  Google Scholar 

  63. Ceradini DJ, Kulkarni AR, Callaghan MJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004;10(8):858–64.

    Article  CAS  PubMed  Google Scholar 

  64. Ellis L, Hicklin D. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer. 2008;8(8):579–91.

    Article  CAS  PubMed  Google Scholar 

  65. Gatenby R, Gillies R. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4(11):891–9.

    Article  CAS  PubMed  Google Scholar 

  66. Gambhir S. Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer. 2002;2(9):683–93.

    Article  CAS  PubMed  Google Scholar 

  67. Paudyal B, Paudyal P, Oriuchi N, Tsushima Y, Nakajima T, Endo K. Clinical implication of glucose transport and metabolism evaluated by 18F-FDG PET in hepatocellular carcinoma. Int J Oncol. 2008;33(5):1047–54.

    CAS  PubMed  Google Scholar 

  68. Gu J, Yamamoto H, Fukunaga H, et al. Correlation of GLUT-1 overexpression, tumor size, and depth of invasion with 18F-2-fluoro-2-deoxy-d-glucose uptake by positron emission tomography in colorectal cancer. Dig Dis Sci. 2006;51(12):2198–205.

    Article  CAS  PubMed  Google Scholar 

  69. Kato H, Takita J, Miyazaki T, et al. Correlation of 18-F-fluorodeoxyglucose (FDG) accumulation with glucose transporter (Glut-1) expression in esophageal squamous cell carcinoma. Anticancer Res. 2003;23(4):3263–72.

    CAS  PubMed  Google Scholar 

  70. Kunkel M, Reichert T, Benz P, et al. Overexpression of Glut-1 and increased glucose metabolism in tumors are associated with a poor prognosis in patients with oral squamous cell carcinoma. Cancer. 2003;97(4):1015–24.

    Article  CAS  PubMed  Google Scholar 

  71. Semenza G. HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev. 2010;20(1):51–6.

    Article  CAS  PubMed  Google Scholar 

  72. Minchenko A, Leshchinsky I, Opentanova I, et al. Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. J Biol Chem. 2002;277(8):6183–7.

    Article  CAS  PubMed  Google Scholar 

  73. Potter C, Harris A. Hypoxia inducible carbonic anhydrase IX, marker of tumour hypoxia, survival pathway and therapy target. Cell Cycle. 2004;3(2):164–7.

    Article  CAS  PubMed  Google Scholar 

  74. Robertson N, Potter C, Harris A. Role of carbonic anhydrase IX in human tumor cell growth, survival, and invasion. Cancer Res. 2004;64(17):6160–5.

    Article  CAS  PubMed  Google Scholar 

  75. Pouysségur J, Dayan F, Mazure N. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature. 2006;441(7092):437–43.

    Article  CAS  PubMed  Google Scholar 

  76. Greijer AE, de Jong MC, Scheffer GL, Shvarts A, van Diest PJ, van der Wall E. Hypoxia-induced acidification causes mitoxantrone resistance not mediated by drug transporters in human breast cancer cells. Cell Oncol. 2005;27(1):43–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Coutts AS, Pires IM, Weston L, et al. Hypoxia-driven cell motility reflects the interplay between JMY and HIF-1alpha. Oncogene. 2011;30(48):4835–42.

    Article  CAS  PubMed  Google Scholar 

  78. Raheja LF, Genetos DC, Wong A, Yellowley CE. Hypoxic regulation of mesenchymal stem cell migration: the role of RhoA and HIF-1alpha. Cell Biol Int. 2011;35(10):981–9.

    Article  CAS  PubMed  Google Scholar 

  79. Gilkes DM, Xiang L, Lee SJ, et al. Hypoxia-inducible factors mediate coordinated RhoA-ROCK1 expression and signaling in breast cancer cells. Proc Natl Acad Sci USA. 2014;111(3):E384–93.

    Article  CAS  PubMed  Google Scholar 

  80. Aubert S, Fauquette V, Hemon B, et al. MUC1, a new hypoxia inducible factor target gene, is an actor in clear renal cell carcinoma tumor progression. Cancer Res. 2009;69(14):5707–15.

    Article  CAS  PubMed  Google Scholar 

  81. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2(3):161–74.

    Article  CAS  PubMed  Google Scholar 

  82. Ecimovic P, McHugh B, Murray D, Doran P, Buggy DJ. Effects of sevoflurane on breast cancer cell function in vitro. Anticancer Res. 2013;33(10):4255–60.

    CAS  PubMed  Google Scholar 

  83. Deegan CA, Murray D, Doran P, et al. Anesthetic technique and the cytokine and matrix metalloproteinase response to primary breast cancer surgery. Reg Anesth Pain Med. 2010;35(6):490–5.

    Article  PubMed  Google Scholar 

  84. Chang F, Lee JT, Navolanic PM, et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia. 2003;17(3):590–603.

    Article  CAS  PubMed  Google Scholar 

  85. Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91(2):231–41.

    Article  CAS  PubMed  Google Scholar 

  86. Fu Z, Tindall DJ. FOXOs, cancer and regulation of apoptosis. Oncogene. 2008;27(16):2312–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhou H, Li XM, Meinkoth J, Pittman RN. Akt regulates cell survival and apoptosis at a postmitochondrial level. J Cell Biol. 2000;151(3):483–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Brunet A, Datta SR, Greenberg ME. Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol. 2001;11(3):297–305.

    Article  CAS  PubMed  Google Scholar 

  89. Raphael J, Abedat S, Rivo J, et al. Volatile anesthetic preconditioning attenuates myocardial apoptosis in rabbits after regional ischemia and reperfusion via Akt signaling and modulation of Bcl-2 family proteins. J Pharmacol Exp Ther. 2006;318(1):186–94.

    Article  CAS  PubMed  Google Scholar 

  90. Kawaraguchi Y, Horikawa YT, Murphy AN, et al. Volatile anesthetics protect cancer cells against tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis via caveolins. Anesthesiology. 2011;115(3):499–508.

    Article  CAS  PubMed  Google Scholar 

  91. Jaura AI, Flood G, Gallagher HC, Buggy DJ. Differential effects of serum from patients administered distinct anaesthetic techniques on apoptosis in breast cancer cells in vitro: a pilot study. Br J Anaesth. 2014;113(Suppl 1):i63–7.

    Article  CAS  PubMed  Google Scholar 

  92. Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 2008;68(10):3645–54.

    Article  CAS  PubMed  Google Scholar 

  93. Schietke R, Warnecke C, Wacker I, et al. The lysyl oxidases LOX and LOXL2 are necessary and sufficient to repress E-cadherin in hypoxia: insights into cellular transformation processes mediated by HIF-1. J Biol Chem. 2010;285(9):6658–69.

    Article  CAS  PubMed  Google Scholar 

  94. Krishnamachary B, Zagzag D, Nagasawa H, et al. Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Res. 2006;66(5):2725–31.

    Article  CAS  PubMed  Google Scholar 

  95. Evans A, Russell R, Roche O, et al. VHL promotes E2 box-dependent E-cadherin transcription by HIF-mediated regulation of SIP1 and snail. Mol Cell Biol. 2007;27(1):157–69.

    Article  CAS  PubMed  Google Scholar 

  96. Yang MH, Wu MZ, Chiou SH, et al. Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol. 2008;10(3):295–305.

    Article  CAS  PubMed  Google Scholar 

  97. Phillips R, Mestas J, Gharaee-Kermani M, et al. Epidermal growth factor and hypoxia-induced expression of CXC chemokine receptor 4 on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/PTEN/AKT/mammalian target of rapamycin signaling pathway and activation of hypoxia inducible factor-1alpha. J Biol Chem. 2005;280(23):22473–81.

    Article  CAS  PubMed  Google Scholar 

  98. Ishikawa T, Nakashiro K, Klosek S, et al. Hypoxia enhances CXCR4 expression by activating HIF-1 in oral squamous cell carcinoma. Oncol Rep. 2009;21(3):707–12.

    CAS  PubMed  Google Scholar 

  99. Vanharanta S, Shu W, Brenet F, et al. Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer. Nat Med. 2013;19(1):50–6.

    Article  CAS  PubMed  Google Scholar 

  100. • Davidson SM, Selvaraj P, He D, et al. Remote ischaemic preconditioning involves signalling through the SDF-1alpha/CXCR4 signalling axis. Basic Res Cardiol. 2013;108(5):377. An important study in view of the lack of published data specifically examining the effects of inhalational anesthetics on cancer cell metastasis, providing evidence that activation of the preconditioning cell signaling pathways switches on the SDF-1/CXCR4 axis, a key mechanism in metastasis.

  101. • Sun X, Fang B, Zhao X, Zhang G, Ma H. Preconditioning of mesenchymal stem cells by sevoflurane to improve their therapeutic potential. PloS one. 2014;9(3):e90667. Sevoflurane reduces apoptosis and increases migration in mesenchymal stem cells, mediated at least partially by activation of PI3K/Akt, HIF-1α and HIF-2α.

Download references

Acknowledgments

Dr. Bernhard Riedel wishes to thank Drs. Donal Buggy, Vijaya Gottumukkala, and Erica Sloan for their kind assistance in the development of this issue and the reviewing of the articles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daqing Ma.

Additional information

This article is part of the Topical Collection on Cancer Anesthesia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perry, N.J.S., Ma, D. Inhalational Anesthetic Agents and Their Effects on Cancer Cell Biology. Curr Anesthesiol Rep 5, 268–277 (2015). https://doi.org/10.1007/s40140-015-0119-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40140-015-0119-4

Keywords

Navigation