Skip to main content

Advertisement

Log in

Perioperative Interventions During Cancer Surgery: Can Anesthetic and Analgesic Techniques Influence Outcome?

  • Cancer Anesthesia (B Riedel, Section Editor)
  • Published:
Current Anesthesiology Reports Aims and scope Submit manuscript

Abstract

Cancer is the second most significant cause of morbidity and mortality worldwide. While surgery is the primary treatment form most cancers, the perioperative period and surgical stress may cause an increased propensity for loco-regional or distant metastasis. There is perhaps a signal, from in vitro, animal model laboratory studies, and retrospective clinical studies, which collectively suggest a possible effect of various anesthetic agents and techniques on tumor metastasis and survival of minimal residual cancer. Prospective randomized control trials are needed in order to truly evaluate any effect anesthesia may have on the metastatic tendency of various tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Bar-Yosef S, Melamed R, Page GG, Shakhar G, Shakhar K, BenEliyahu S. Attenuation of the tumor-promoting effect of surgery by spinal blockade in rats. Anesthesiology. 2001;94:1066–73.

    Article  PubMed  CAS  Google Scholar 

  2. Exadaktylos AK, Buggy DJ, Moriarty DC, Mascha E, Sessler DI. Can anesthetic technique for primary breast cancer surgery affect recurrence or metastasis? Anesthesiology. 2006;105(4):660–4.

    Article  PubMed  Google Scholar 

  3. Biki B, Mascha E, Moriarty DC, Fitzpatrick JM, Sessler DI, Buggy DJ. Anesthetic technique for radical prostatectomy surgery affects cancer recurrence: a retrospective analysis. Anesthesiology. 2008;109:180–7.

    Article  PubMed  Google Scholar 

  4. Lacassie HJ, Cartagena J, Brañes J, Assel M, Echevarría GC. The relationship between neuraxial anesthesia and advanced ovarian cancer-related outcomes in the Chilean population. Anesth Analg. 2013;117(3):653–60.

    Article  PubMed  Google Scholar 

  5. Hiller J, Hacking MB, Link EK, Wessels KL, Riedel BJ. Perioperative epidural analgesia reduces cancer recurrence after gastro-oesophageal surgery. Acta Anaesthesiol Scand. 2014;58(3):281–90. doi:https://doi.org/10.1111/aas.12255.

    Article  PubMed  CAS  Google Scholar 

  6. Gottschalk A, Ford JG, Regelin CC, You J, Mascha EJ, Sessler DI, Durieux ME, Nemergut EC. Association between epidural analgesia and cancer recurrence after colorectal cancer surgery. Anesthesiology. 2010;113(1):27–34.

    Article  PubMed  Google Scholar 

  7. Myles PS, Peyton P, Silbert B, et al. Perioperative epidural analgesia for major abdominal surgery for cancer and recurrence-free survival: randomised trial. BMJ. 2011;342:d1491.

    Article  PubMed  Google Scholar 

  8. Ben-Eliyahu S, Shakhar G, Page GG, Stefanski V, Shakhar K. Suppression of NK cell activity and of resistance to metastasis by stress: a role for adrenal catecholamines and beta-adrenoceptors. NeuroImmunoModulation. 2000;8(3):154–64.

    Article  PubMed  CAS  Google Scholar 

  9. Conrick-Martin I, Kell MR, Buggy DJ. Meta-analysis of the effect of central neuraxial regional anesthesia compared with general anesthesia on postoperative natural killer T lymphocyte function. J Clin Anesth. 2012;24:3–7.

    Article  PubMed  Google Scholar 

  10. Salmon H, Franciszkiewicz K, Damotte D, Dieu-Nosjean MC, Validire P, Trautmann A, Mami-Chouaib F, Donnadieu E. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumours. J Clin Invest. 2012;122(3):899–910.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Melamed R, Bar-Yosef S, Shakhar G, Shakhar K, Ben-Eliyaku S. Suppression of natural cell activity and promotion of tumour metastasis by ketamine, thiopental and halothane, but not by propofol: mediating mechanisms and prophylactic measures. Anesth Analg. 2003;97(5):1331–9.

    Article  PubMed  CAS  Google Scholar 

  12. Wada H, Seki S, Takahashi T, Kawarabayashi N, Higuchi H, Habu Y, Sugahara S, Kazama T. Combined spinal and general anaesthesia attenuates liver metastasis by preserving Th1/Th2 cytokine balance. Anesthesiology. 2007;106:499–506.

    Article  PubMed  CAS  Google Scholar 

  13. • A. Buckley, S. McQuaid, P. Johnson, D. J. Buggy. Effect of anaesthetic technique on the natural killer cell anti-tumour activity of serum from women undergoing breast cancer surgery: a pilot study. Br J Anaesth 2014;113(S1):i56–62. This study demonstrated that serum from patients who received a regional technique and TCI anaesthetic for breast cancer surgery, could increase the cytotoxicity of NK cells as compared to serum taken from patients taken from those patients who had a general anaesthetic and morphine analgesia.

  14. Jaura AI, Flood G, Gallagher HC, Buggy DJ. Differential effects of serum from patients administered distinct anaesthetic techniques on apoptosis in breast cancer cells in vitro: a pilot study. Br J Anaesth. 2014;113(S1):i63–7.

    Article  PubMed  CAS  Google Scholar 

  15. • Desmond F, McCormack J, Mulligan N, Stokes M, Buggy DJ. Effect of Anaesthetic Technique on Immune Cell Infiltration in Breast Cancer: A Follow-up Pilot Analysis of a Prospective, Randomised, Investigator-masked Study. Anticancer Res. 2015;35(3):1311–9. This study involved examination of samples from a large international prospective randomized control trial comparing different anaesthetic methods for breast cancer surgery. The results suggest that immunosuppression is greatly reduced when a regional technique and TCI anaesthesia are used as compared to a balanced general anaesthetic with morphine analgesia. This study thereby demonstrates that a survival advantage afforded by TCI and regional technique may at least in part be attributed to immune cell mechanisms.

  16. O’Riain SC, Buggy DJ, Kerin MJ, Watson RW, Moriarty DC. Inhibition of the stress response to breast cancer surgery by regional anesthesia and analgesia does not affect vascular endothelial growth factor and prostaglandin E2. Anesth Analg. 2005;100(1):244–9.

    Article  PubMed  CAS  Google Scholar 

  17. Looney M, Doran P, Buggy DJ. Effect of anesthetic technique on serum vascular endothelial growth factor C and transforming growth factor β in women undergoing anesthesia and surgery for breast cancer. Anesthesiology. 2010;113(5):1118–25.

    Article  PubMed  CAS  Google Scholar 

  18. Schlagenhauff B, Ellwanger U, Breuninger H, Stroebel W, Rassner G, Garbe C. Prognostic impact of the type of anaesthesia used during the excision of primary cutaneous melanoma. Melanoma Res. 2000;10:165–9.

    Article  PubMed  CAS  Google Scholar 

  19. Shapiro J, Jersky J, Katzav S, Feldman M, Segal S. Anesthetic drugs accelerate the progression of postoperative metastases of mouse tumors. J Clin Invest. 1981;68:678–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. De Hert SG, Turani F, Mathur S, Stowe DF. Cardioprotection with volatile anesthetics: mechanisms and clinical implications. Anesth Analg. 2005;100:1584–93.

    Article  PubMed  Google Scholar 

  21. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:721–32.

    Article  PubMed  CAS  Google Scholar 

  22. Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 2010;29:625–34.

    Article  PubMed  CAS  Google Scholar 

  23. Liu J, Zhang J, Wang X, Li Y, Chen Y, Li K, Zhang J, Yao L, Guo G. HIF-1 and NDRG2 contribute to hypoxia-induced radioresistance of cervical cancer Hela cells. Exp Cell Res. 2010;316:1985–93.

    Article  PubMed  CAS  Google Scholar 

  24. Benzonana LL, Perry NJS, Watts HR, Yang B, Perry IA, Coombes C, Takata M, Ma D. Isoflurane, a commonly used volatile anesthetic, enhances renal cancer growth and malignant potential via the hypoxia-inducible factor cellular signaling pathway in vitro. Anesthesiology. 2013;119(3):593–605.

    Article  PubMed  CAS  Google Scholar 

  25. Müller-Edenborn B, Roth-Z’graggen B, Bartnicka K, Borgeat A, Hoos A, Borsig L, Beck-Schimmer B. Volatile anesthetics reduce invasion of colorectal cancer cells through down-regulation of matrix metalloproteinase-9. Anesthesiology. 2012;117(2):293–301.

    Article  PubMed  CAS  Google Scholar 

  26. Ash SA, Valchev GI, Looney M, Ni Mhathuna A, Crowley PD, Gallagher HC, Buggy DJ. Xenon decreases cell migration and secretion of a pro-angiogenesis factor in breast adenocarcinoma cells: comparison with sevoflurane. Br J Anaesth. 2014;113(Suppl 1):i14–21. doi:https://doi.org/10.1093/bja/aeu191.

    Article  PubMed  CAS  Google Scholar 

  27. Weimann J. Toxicity of nitrous oxide. Best Pract Res. 2003;17:47–61.

    Article  CAS  Google Scholar 

  28. Fleischmann E, Schlemitz K, Dalton JE, et al. Nitrous oxide may not increase the risk of cancer recurrence after colorectal surgery: a follow-up of a randomized controlled trial. BMC Anesthesiol. 2009;9:9.

    Article  CAS  Google Scholar 

  29. Vasileiou I, Xanthos T, Koudouna E, Perrea D, Klonaris C, Katsargyris A, Papadimitriou L. Propofol: a review of its non-anaesthetic effects. Eur J Pharmacol. 2009;605:1–8.

    Article  PubMed  CAS  Google Scholar 

  30. Zhang L, Wang N, Zhou S, Ye W, Jing G, Zhang M. Propofol induces proliferation and invasion of gallbladder cancer cells through activation of Nrf2. J Exp Clin Cancer Res. 2012;31:66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wang P, Chen J, Mu L, Du Q, Niu X, Zhaang M. Propofol inhibits invasion and enhances paclitaxel induced apoptosis in ovarian cancer cells through suppression of the transcription factor slug. Eur Rev Med Pharmacol Sci. 2013;17(13):1722–9.

    PubMed  CAS  Google Scholar 

  32. Kurrey NK, K A, Bapat SA. Snail and slug are major determinants of ovarian cancer invasiveness at the transcription level. Gynecol Oncol. 2005;97(1):155–65.

    Article  PubMed  CAS  Google Scholar 

  33. Ecimovic P, McHugh B, Murray D, Doran P, Buggy DJ. Effects of sevoflurane on breast cancer cell function in vitro. Anticancer Res. 2013;33(10):4255–60.

    CAS  PubMed  Google Scholar 

  34. Ecimovic P, Murray D, Doran P, Buggy DJ. Propofol and bupivacaine in breast cancer cell function in vitro - role of the NET1 gene. Anticancer Res. 2014;34(3):1321–31.

    PubMed  CAS  Google Scholar 

  35. Wan Q, Wang X, Wang YJ, Song L, Wang SH, Ho WZ. Morphine suppresses intracellular interferon-alpha expression in neuronal cells. J Neuroimmunol. 2008;199(1–2):1–9. doi:https://doi.org/10.1016/j.jneuroim.2008.04.026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Coussons-Read ME, Giese S. Acute morphine treatment alters cellular immune function in the lungs of healthy rats. Int Immunopharmacol. 2001;1:1571–81.

    Article  PubMed  CAS  Google Scholar 

  37. Yeager MP, Colacchio TA, Yu CT. Morphine inhibits spontaneous and cytokine-enhanced natural killer cell cytotoxicity in volunteers. Anesthesiology. 1995;83:500–8.

    Article  PubMed  CAS  Google Scholar 

  38. Gaspani L, Bianchi M, Limiroli E, Panerai AE, Sacerdote P. Theanalgesic drug tramadol prevents the effect of surgery on natural killer cell activity and metastatic colonization in rats. J Neuroimmunol. 2002;129r9:18–12.

    Article  Google Scholar 

  39. Bilfinger TV, Fimiani C, Stefano GB. Morphine’s immunoregulatory actions are not shared by fentanyl. Int J Cardiol. 1998;64(Suppl 1):S61–6.

    Article  PubMed  Google Scholar 

  40. Martucci C, Panerai AE, Sacerdote R. Chronic fentany! or buprenorphine infusion in the mouse: similar analgesic profile but different effects on immune responses. Pain. 2004;110:385–95.

    Article  PubMed  CAS  Google Scholar 

  41. Gupta K, Kshirsagar S, Chang L, Schwartz R, Law PY, Yee D, Hebbel RP. Morphine stimulates angiogenesis by activating proangiogenic and survival-promoting signaling and promotes breast tumor growth. Cancer Res. 2002;62:4491–8.

    CAS  PubMed  Google Scholar 

  42. Singleton PA, Mambetsariev N, Lennon FE, Mathew B, Siegler JH, Moreno-Vinasco L, Salgia R, Moss J, Garcia JG. Methylnaltrexone potentiates the anti-angiogenic effects of mTOR inhibitors. J Angiogenes Res. 2010;2:5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Singleton PA, Lingen MW, Fekete MJ, Garcia JG, Moss J. Methylnaltrexone inhibits opiate and VEGF-induced angiogenesis: role of receptor transactivation. Microvasc Res. 2006;72:3–11.

    Article  PubMed  CAS  Google Scholar 

  44. Farooqui M, Li Y, Rogers T, et al. COX-2 inhibitor celecoxib prevents chronic morphine-induced promotion of angiogenesis, tumour growth, metastasis and mortality, without compromising analgesia. Br J Cancer. 2007;97:1523–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. • Singleton PA, Mirzapoiazova T, Hasina R, Salgia R, Moss J. Increased μ-opioid receptor expression in metastatic lung cancer. Br J Anaesth. 2014;113(Suppl 1):i103–8. doi: https://doi.org/10.1093/bja/aeu165. This study demonstrated that the η-opioid receptor expression level is linked to disease progression in lung cancer. Previously the same group and others have demonstrated a higher η-opioid receptor expression in tumour cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Zylla D, Gourley BL, Vang D, Jackson S, Boatman S, Lindgren B, Kuskowski MA, Le C, Gupta K, Gupta P. Opioid requirement, opioid receptor expression, and clinical outcomes in patients with advanced prostate cancer. Cancer. 2013;119(23):4103–10. doi:https://doi.org/10.1002/cncr.28345.

    Article  PubMed  CAS  Google Scholar 

  47. Mathew B, Lennon FE, Siegler J, Mirzapoiazova T, Mambetsariev N, Sammani S, Gerhold LM, LaRiviere PJ, Chen CT, Garcia JG, Salgia R, Moss J, Singleton PA. The novel role of the mu opioid receptor in lung cancer progression: a laboratory investigation. Anesth Analg. 2011;112:558–67.

    Article  PubMed  CAS  Google Scholar 

  48. Ecimovic P, Murray D, Doran P, McDonald J, Lambert DG, Buggy DJ. Direct effect of morphine on breast cancer cell function in vitro: role of the NET1 gene. Br J Anaesth. 2011;107(6):916–23. doi:https://doi.org/10.1093/bja/aer259.

    Article  PubMed  CAS  Google Scholar 

  49. Kajdaniuk D, Marek B, Swietochowska E, Ciesielska-Kopacz N, Buntner B. Is positive correlation between cortisol and met- enkephalin concentration in blood of women with breast cancer a reaction to stress before chemotherapy administration? Patho-physiology. 2000;7:47–51.

    CAS  Google Scholar 

  50. Boehncke S, Hardt K, Schadendorf D, et al. Endogenous mu-opioid peptides modulate immune response towards malignant melanoma. Exp Dermatol. 2011;20:24–8.

    Article  PubMed  CAS  Google Scholar 

  51. Smith TJ, Staats PS, Deer T, Stearns LJ, Rauck RL, Boortz-Marx RL, Buchser E, Català E, Bryce DA, Coyne PJ, Pool GE. Implantable Drug Delivery Systems Study Group: randomized clinical trial of an implantable drug delivery system compared with comprehensive medical management for refractory cancer pain: Impact on pain, drug-related toxicity, and survival. J Clin Oncol. 2002;20:4040–9.

    Article  PubMed  CAS  Google Scholar 

  52. Wang D, Dubois RN. Prostaglandins and cancer. Gut. 2006;55(1):115–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Greenhough A, Smartt HJ, Moore AE, Roberts HR, Williams AC, Paraskeva C, Kaidi A. The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis. 2009;30(3):377–86. doi:https://doi.org/10.1093/carcin/bgp014.

    Article  PubMed  CAS  Google Scholar 

  54. Thun MJ, Heath CW Jr. Aspirin use and reduced risk of gastro-intestinal tract cancers in the American Cancer Society prospective studies. Prev Med. 1995;24:116–8.

    Article  PubMed  CAS  Google Scholar 

  55. Giardiello FM, Hamilton SR, Krush AJ, Piantadosi S, Hylind LM, Celano P, Booker SV, Robinson CR, Offerhaus GJA. Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N Engl J Med. 1993;328:1313–6.

    Article  PubMed  CAS  Google Scholar 

  56. Sano H, Kawahito Y, Wilder RL, Hashiramoto A, Mukai S, Asai K, Kimura S, Kato H, Kondo M, Hla T. Expression of cyclooxygenase-1 and -2 in human colorectal cancer. Cancer Res. 1995;55:3785–9.

    PubMed  CAS  Google Scholar 

  57. Sheehan KM, Sheahan K, O’Donoghue DP, MacSweeney F, Conroy RM, Fitzgerald DJ, Murray FE. The relationship between cyclooxygenase-2 expression and colorectal cancer. JAMA. 2000;283(11):1427.

    Article  Google Scholar 

  58. Rizzo MT. Cyclooxygenase-2 in oncogenesis. Clin Chim Acta. 2011;412(9–10):671–87.

    Article  PubMed  CAS  Google Scholar 

  59. Midgley Rachel S, McConkey Christopher C, Johnstone Elaine C, Dunn Janet A, Smith Justine L, Grumett Simon A, Julier Patrick, Iveson Claire, Yanagisawa Yoko, Warren Bryan, Langman Michael J, Kerr David J. Phase III randomized trial assessing rofecoxib in the adjuvant setting of colorectal cancer: final results of theVICTOR Trial. J Clin Oncol. 2010;28(30):4575–80. doi:https://doi.org/10.1200/JCO.2010.29.6244.

    Article  PubMed  CAS  Google Scholar 

  60. Half E, Tang XM, Gwyn K, Sahin A, Wathen K, Sinicrope FA. Cyclooxygenase-2 expression in human breast cancers and adjacent ductal carcinoma in situ. Cancer Res. 2002;62:1676–81.

    PubMed  CAS  Google Scholar 

  61. Denkert C, Winzer KJ, Muller BM, Weichert W, Pest S, Kobel M, Kristiansen G, Reles A, Siegert A, Guski H, Hauptmann S. Elevated expression of cyclooxygensase-2 is a negative prognostic factor for disease free survival and overall survival in patients with breast carcinoma. Cancer. 2003;97:2978–87.

    Article  PubMed  CAS  Google Scholar 

  62. Subbaramaiah K, Norton L, Gerald W, Dannenberg AJ. Cyclooxygenase-2 is overexpressed in HER-2/neu-positive breast cancer: evidence for involvement of AP-1 and PEA3. J Biol Chem. 2002;277:18649–57.

    Article  PubMed  CAS  Google Scholar 

  63. Glover JA, Hughes CM, Cantwell MM, Murray LJ. A systematic review to establish the frequency of cyclooxygenase-2 expression in normal breast epithelium, ductal carcinoma in situ, microinvasive carcinoma of the breast and invasive breast cancer. Br J Cancer. 2011;105:13–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Stasinopoulos I, Mori N, Bhujwalla ZM. The malignant phenotype of breast cancer cells is reduced by COX-2 silencing. Neoplasia. 2008;10:1163–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Retsky M, Demicheli R, Hrushesky WJM, Forget P, De Kock M, Gukas I, Rogers RA, Baum M, Sukhatme V, Vaidya JS. Reduction of breast cancer relapses with perioperative non-steroidal anti-inflammatory drugs: new findings and a review. Curr Med Chem. 2013;20(33):4163–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Hida T, Yatabe Y, Achiwa H, Muramatsu H, Kozaki K, Nakamura S, Ogawa M, Mitsudomi T, Sugiura T, Takahashi T. Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas. Cancer Res. 1998;58:3761–4.

    PubMed  CAS  Google Scholar 

  67. Achiwa H, Yatabe Y, Hida T, et al. Prognostic significance of elevated cyclooxygenase 2 expression in primary, resected lung adenocarcinomas. Clin Cancer Res. 1999;5:1001–5.

    PubMed  CAS  Google Scholar 

  68. Brabender J, Park J, Metzger R, et al. Prognostic significance of cyclooxygenase 2 mRNA expression in non- small cell lung cancer. Ann Surg. 2002;235:440–3.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Muscat JE, Chen SQ, Richie JPJR, Altorki NK, Citron M, Olson S, Neugut AI, Stellman SD. Risk of lung carcinoma among users of nonsteroidal anti-inflammatory drugs. Cancer. 2003;97(7):1732–6.

    Article  PubMed  Google Scholar 

  70. Schreinemachers DM, Everson RB. Aspirin use and lung, colon, and breast cancer incidence in a prospective study. Epidemiology. 1994;5:138–46.

    Article  PubMed  CAS  Google Scholar 

  71. Harris RE, Beebe-Donk J, Alshafie GA. Reduced risk of human lung cancer by selective cyclooxygenase 2 (Cox-2) blockade: results of a case control study. Int J Biol Sci. 2007;3(5):328–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Fraser SP, Ozerlat-Gunduz I, Brackenbury WJ, et al. Regulation of voltage-gated sodium channel expression in cancer: hormones, growth factors and auto-regulation. Philos Trans R Soc B. 2014;369:20130105.

    Article  Google Scholar 

  73. Djamgoz MBA. Biophysics of cancer: cellular excitability (‘CELEX’) hypothesis of metastasis. J Clin Exp Oncol. 2014. doi:https://doi.org/10.4172/2324-9110.S1-005.

  74. Wulff H, Castle NA, Pardo LA. Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Disc. 2009;8:982–1001.

    Article  CAS  Google Scholar 

  75. • Djamgoz MB. Biophysics of cancer: cellular excitability (“CELEX”) hypothesis of metastasis. J Clin Exp Oncol 2015;S1:005. doi:https://doi.org/10.4172/2324-9110.S1-005. This paper describes the novel Cellular Excitability Hypothesis of Metastasis and also shows the relationship between cell excitablilty and metastatic potential.

  76. Levin M. Molecular bioelectricity in developmental biology: new tools and recent discoveries: control of cell behavior and pattern formation by transmembrane potential gradients. Bioessays. 2012;34:205–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Fraser SP, Diss JK, Chioni AM, Mycielska ME, Pan H, et al. Voltage- gated sodium channel expression and potentiation of human breast cancer metastasis. Clin Cancer Res. 2005;11:5381–9.

    Article  PubMed  CAS  Google Scholar 

  78. Brackenbury WJ, Djamgoz MB. Activity-dependent regulation of voltage-gated Na+ channel expression in Mat-LyLu rat prostate cancer cell line. J Physiol. 2006;573:343–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. House CD, Vaske CJ, Schwartz AM, Obias V, Frank B, et al. Voltage- gated Na+ channel SCN5A is a key regulator of a gene transcriptional network that controls colon cancer invasion. Cancer Res. 2010;70:6957–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Campbell TM, Main MJ, Fitzgerald EM. Functional expression of the voltage-gated Na+ -channel Nav1.7 is necessary for EGF-mediated invasion in human non-small cell lung cancer cells. J Cell Sci. 2013;126:4939–49.

    PubMed  CAS  Google Scholar 

  81. Diss JK, Archer SN, Hirano J, Fraser SP, Djamgoz MB. Expression profiles of voltage-gated Na(+) channel alpha-subunit genes in rat and human prostate cancer cell lines. Prostate. 2001;48:165–78.

    Article  PubMed  CAS  Google Scholar 

  82. Wepsic HT. Overview of oncofetal antigens in cancer. Ann Clin Lab Sci. 1983;13:261–6.

    PubMed  CAS  Google Scholar 

  83. Esteller M. Relevance of DNA methylation in the management of cancer. Lancet Oncol. 2003;4:351–8.

    Article  PubMed  CAS  Google Scholar 

  84. Navada SC, Steinmann J, Lubbert M, Silverman LR. Clinical development of demethylating agents in hematology. J Clin Invest. 2014;124:40–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Lirk P, Hollmann MW, Fleischer M, Weber NC, Fiegl H. Lidocaine and ropivacaine, but not bupivacaine, demethylate deoxyribonucleic acid in breast cancer cells in vitro. Br J Anaesth. 2014;113(Suppl 1):i32–8. doi:https://doi.org/10.1093/bja/aeu201.

    Article  PubMed  CAS  Google Scholar 

  86. Castellano S, Kuck D, Sala M, Novellino E, Lyko F, Sbardella G. Constrained analogues of procaine as novel small molecule inhibitors of DNA methyltransferase-1. J Med Chem. 2008;51:2321–5.

    Article  PubMed  CAS  Google Scholar 

  87. Hollmann MW, Gross A, Jelacin N, Durieux ME. Local anesthetic effects on priming and activation of human neutrophils. Anesthesiology. 2001;95:113–22.

    Article  PubMed  CAS  Google Scholar 

  88. Piegeler T, et al. Anti-metastatic potential of amide-linked local anesthetics: inhibition of lung adenocarcinoma cell migration and inflammatory src signaling independent of sodium channel blockade. Anesthesiology. 2012;117.3:548–59.

    Article  CAS  Google Scholar 

  89. Hu G, Minshall RD. Regulation of transendothelial permeability by Src kinase. Microvasc Res. 2009;77:21–5.

    Article  PubMed  CAS  Google Scholar 

  90. Liu G, Vogel SM, Gao X, Javaid K, Hu G, Danilov SM, Malik AB, Minshall RD. Src phosphorylation of endothelial cell surface intercellular adhesion molecule-1 mediates neutrophil adhesion and contributes to the mechanism of lung inflammation. Arterioscler Thromb Vasc Biol. 2011;31:1342–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Guarino M. Src signaling in cancer invasion. J Cell Physiol. 2010;223:14–26.

    PubMed  CAS  Google Scholar 

  92. Kim MP, Park SI, Kopetz S, Gallick GE. Src family kinases as mediators of endothelial permeability: effects on inflammation and metastasis. Cell Tissue Res. 2009;335:249–59.

    Article  PubMed  CAS  Google Scholar 

  93. Lang A, Ben Horin S, Picard O, Fudim E, Amariglio N, Chowers Y. Lidocaine inhibits epithelial chemokine secretion via inhibition of nuclear factor kappa B activation. Immunobiology. 2010;215:304–13.

    Article  PubMed  CAS  Google Scholar 

  94. Talukder Y, Stillwell AP, Siu SK, Ho Y-H. comparing survival and recurrence in curative stage I to III colorectal cancer in transfused and nontransfused patients. Int Surg. 2014;99(1):8–16.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Meng J, Lu XB, Tang YX, Sun GP, Li X, Yan YF, Liang GF, Ma SP, Li XX. Effects of allogeneic blood transfusion in patients with stage II colon cancer. Asian Pac J Cancer Prev. 2013;14(1):347–50.

    Article  PubMed  Google Scholar 

  96. de Almeida JP, Vincent JL, Galas FR, de Almeida EP, Fukushima JT, Osawa EA, Bergamin F, Park CL, Nakamura RE, Fonseca SM, Cutait G, Alves JI, Bazan M, Vieira S, Sandrini AC, Palomba H. Transfusion requirements in surgical oncology patients: a prospective, randomized controlled trial. Anesthesiology. 2015;122(1):29–38. doi:https://doi.org/10.1097/ALN.0000000000000511.

    Article  PubMed  CAS  Google Scholar 

  97. Holbrook NJ, Cox WI, Horner HC. Direct suppression of natural killer activity in human peripheral blood leukocyte cultures by glucocorticoids and its modulation by interferon. Cancer Res. 1983;43:4019–25.

    PubMed  CAS  Google Scholar 

  98. De Oliveira Jr GS, McCarthy R, Turan A, Schink JC, Fitzgerald PC, Sessler DI. Is dexamethasone associated with recurrence of ovarian cancer? Anesthesia & Analgesia. 2014;118(6):1213–8.

    Article  CAS  Google Scholar 

  99. • Singh PP, Lemanu DP, Taylor MH, Hill AG. Association between preoperative glucocorticoids and long-term survival and cancer recurrence after colectomy: follow-up analysis of a previous randomized controlled trial. Br J Anaesth. 2014;113(Suppl 1):i68–73. This FARCT (is FARCT correct) study revealed that there was a significant correlation between administration of glucocorticoids and distant metastasis post colectomy. The study only involved sixty patients and so results should be interpreted with caution.

    Article  PubMed  CAS  Google Scholar 

  100. Karaman K, Bostanci EB, Aksoy E, Ulas M, Yigit T, Erdemli MO, Ercin U, Bilgihan A, Saydam G, Akoglu M. Effects of dexamethasone and pheniramine hydrogen maleate on stress response in patients undergoing elective laparoscopic cholecystectomy. Am J Surg. 2013;205:213–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Bernhard Riedel wishes to thank Drs. Donal Buggy, Vijaya Gottumukkala, and Erica Sloan for their kind assistance in the development of this issue and the reviewing of the articles. The authors wish to thank Ms. Elena Levins for her contribution to Figure 1 of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirk J. Levins.

Additional information

This article is part of the Topical Collection on Cancer Anesthesia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levins, K.J., Buggy, D.J. Perioperative Interventions During Cancer Surgery: Can Anesthetic and Analgesic Techniques Influence Outcome?. Curr Anesthesiol Rep 5, 318–330 (2015). https://doi.org/10.1007/s40140-015-0117-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40140-015-0117-6

Keywords

Navigation