Skip to main content

Advertisement

Log in

Pharmacologic Factors: Anaesthetic Agents that May Influence Cancer Outcomes: Local Anaesthetics

  • Cancer Anesthesia (B Riedel, Section Editor)
  • Published:
Current Anesthesiology Reports Aims and scope Submit manuscript

Abstract

Molecular pathways linking inflammation and cancer have been demonstrated. Local anaesthetics have been shown to possess anti-inflammatory effects. Recent retrospective studies have shown that the application of regional anaesthesia is associated with a reduced risk of metastasis and improved long-term outcomes. The beneficial effect of regional anaesthesia has been attributed to the reduction of the postoperative stress response. Biomolecular actions like reduction of Src activation and ICAM-1 expression can explain some of these benefits observed in cancer surgery with local or regional anaesthesia techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Exadaktylos AK, Buggy DJ, Moriarty DC, Mascha E, Sessler DI. Can anesthetic technique for primary breast cancer surgery affect recurrence or metastasis? Anesthesiology. 2006;105:660–4.

    Article  PubMed  Google Scholar 

  2. Biki B, Mascha E, Moriarty DC, Fitzpatrick JM, Sessler DI, Buggy DJ. Anesthetic technique for radical prostatectomy surgery affects cancer recurrence: a retrospective analysis. Anesthesiology. 2008;109:180–7.

    Article  PubMed  Google Scholar 

  3. Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell. 2005;7:211–7.

    Article  CAS  PubMed  Google Scholar 

  4. Lin E, Calvano SE, Lowry SF. Cytokine response in abdominal surgery. In: Schein M, Wise L, editors. Cytokines and the Abdominal Surgeon. Austin: Landes; 1998. p. 17–34.

    Google Scholar 

  5. Brochner AC, Toft P. Pathophysiology of the systemic inflammatory response after major accidental trauma. Scand J Trauma Resusc Emerg Med. 2009;17:43.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nishizaki T, Matsumata T, Kanematsu T, Yasunaga C, Sugimachi K. Surgical manipulation of VX2 carcinoma in the rabbit liver evokes enhancement of metastasis. J Surg Res. 1990;49:92–7.

    Article  CAS  PubMed  Google Scholar 

  7. Hayashi N, Egami H, Kai M, Kurusu Y, Takano S, Ogawa M. No-touch isolation technique reduces intraoperative shedding of tumor cells into the portal vein during resection of colorectal cancer. Surgery. 1999;125:369–74.

    Article  CAS  PubMed  Google Scholar 

  8. Scauton DE, Marlin SD, Stratowa C, Dustin ML, Springer TA. Primary structure of ICAM-I demonstrates interaction between members of the immunoglobulin and integrin supergene families. Cell. 1998;52(6):925–33.

    Google Scholar 

  9. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994;76:301.

    Article  CAS  PubMed  Google Scholar 

  10. Kim I, Moon SO, Kim SH, Kim HJ, Koh YS, Koh GY. Vascular endothelial growth factor expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin through nuclear factor-kappa B activation in endothelial cells. J Biol Chem. 2001;276:7614–20.

    Article  CAS  PubMed  Google Scholar 

  11. Johnson JP. Cell adhesion molecules in the development and progression of malignant melanoma. Cancer Metastasis Rev. 1999;18:345–57.

    Article  CAS  PubMed  Google Scholar 

  12. Rosette C, Roth RB, Oeth P, et al. Role of ICAM1 in invasion of human breast cancer cells. Carcinogenesis. 2005;26:943–50.

    Article  CAS  PubMed  Google Scholar 

  13. Kageshita T, Yoshii A, Kimura T, et al. Clinical relevance of ICAM-1 expression in primary lesions and serum of patients with malignant melanoma. Cancer Res. 1993;53:4927–32.

    CAS  PubMed  Google Scholar 

  14. Natali PG, Hamby CV, Felding-Habermann B, et al. Clinical significance of alpha(v)beta3 integrin and intercellular adhesion molecule-1 expression in cutaneous malignant melanoma lesions. Cancer Res. 1997;57:1554–60.

    CAS  PubMed  Google Scholar 

  15. Hayes SH, Seigel GM. Immunoreactivity of ICAM-1 in human tumors, metastases and normal tissues. Int J Clin Exp Pathol. 2009;2:553–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Maruo Y, Gochi A, Kaihara A, et al. ICAM-1 expression and the soluble ICAM-1 level for evaluating the metastatic potential of gastric cancer. Int J Cancer. 2002;100:486–90.

    Article  CAS  PubMed  Google Scholar 

  17. Huang WC, Chan ST, Yang TL, Tzeng CC, Chen CC. Inhibition of ICAM-1 gene expression, monocyte adhesion and cancer cell invasion by targeting IKK complex: molecular and functional study of novel alpha-methylene-gamma-butyrolactone derivatives. Carcinogenesis. 2004;25:1925–34.

    Article  CAS  PubMed  Google Scholar 

  18. Fizazi K. The role of Src in prostate cancer. Ann Oncol. 2007;18:1765–73.

    Article  CAS  PubMed  Google Scholar 

  19. Hu G, Minshall RD. Regulation of transendothelial permeability by Src kinase. Microvasc Res. 2009;77:21–5.

    Article  CAS  PubMed  Google Scholar 

  20. Summy JM, Gallick GE. Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev. 2003;22:337–58.

    Article  CAS  PubMed  Google Scholar 

  21. Rollins BJ. Monocyte chemoattractant protein 1: a potential regulator of monocyte recruitment in inflammatory disease. Mol Med Today. 1996;2:198–200.

    Article  CAS  PubMed  Google Scholar 

  22. Rollins BJ, Walz A, Baggiolini M. Recombinant human MCP-1/JE induces chemotaxis, calcium flux, and the respiratory burst in human monocytes. Blood. 1991;78:1112–6.

    Article  CAS  PubMed  Google Scholar 

  23. Goede V, Brogelli L, Ziche M, Augustin HG. Induction of inflammatory angiogenesis by monocyte chemoattractant protein-1. Int J Cancer. 1999;82:765–70.

    Article  CAS  PubMed  Google Scholar 

  24. Cai Z, Chen Q, Chen J, et al. Monocyte chemotactic protein 1 promotes lung cancer-induced bone resorptive lesions in vivo. Neoplasia. 2009;11:228–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44.

    Article  CAS  PubMed  Google Scholar 

  26. Gottschalk A, Brodner G, Van Aken HK, Ellger B, Althaus S, Schulze HJ. Can regional anaesthesia for lymph-node dissection improve the prognosis in malignant melanoma? Br J Anaesth. 2012;109:253–9.

    Article  CAS  PubMed  Google Scholar 

  27. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357:539–45.

    Article  CAS  PubMed  Google Scholar 

  28. Karin M. Nuclear factor-kappaB in cancer development and progression. Nature. 2006;441:431–6.

    Article  CAS  PubMed  Google Scholar 

  29. • Sheppard K, Kinross KM, Solomon B, Pearson RB, Phillips WA. Targeting PI3 kinase/AKT/mTor signaling in Cancer. Crit Rev Oncog. 2012;17:69–95. PI3-κ pathway is frequently dysregulated in human cancer.

  30. Bruhn MA, Pearson RB, Hannan RD, Sheppard KE. AKT-independent PI3-K signaling in cancer-emerging role for SGK3. Cancer Manag Res. 2013;5:281–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rodon J, Dienstmann R, Serra V, Tabernero J. Development of PI3K inhibitors: lessons learned from early clinical trials. Rev Clin Oncol. 2013;10:143–53.

    Article  CAS  Google Scholar 

  32. Je DW, Ji YG, Cho Y, Lee DH. The inhibition of Src family kinase suppresses pancreatic cancer cell proliferation, migration, and invasion. Pancreas. 2014;43:768–76.

    Article  CAS  PubMed  Google Scholar 

  33. • Araujo JC, Trudel GC, Paliwal P. Long-term use of dasatinib in patients with metastatic castration-resistant prostate cancer after receiving the combination of dasatinib and docetaxel. Cancer Manag Res. 2013;6:25–30. Src kinase inhibitors suppressed proliferation and induced cell cycle arrest in prostate cancer.

  34. Hollmann MW, Durieux ME. Local anesthetics: effects on inflammation, wound healing and coagulation. Prog Anesthesiol. 2000;14:291–304.

    Google Scholar 

  35. Hollmann MW, Durieux ME. Local anesthetics: effects on the central nervous system and bronchial reactivity. Prog Anesthesiol. 2000;14:323–36.

    Google Scholar 

  36. Hollmann MW, Durieux ME. Local anesthetics and the inflammatory response: a new therapeutic indication? Anesthesiology. 2000;93:858–75.

    Article  CAS  PubMed  Google Scholar 

  37. Hollmann MW, Difazio CA, Durieux ME. Ca-signaling G-protein-coupled receptors: a new site of local anesthetic action? Reg Anesth Pain Med. 2001;26:565–71.

    CAS  PubMed  Google Scholar 

  38. Krause KH, Demaurex N, Jaconi M, Lew DP. Ion channels and receptor-mediated Ca2+ influx in neutrophil granulocytes. Blood Cells. 1993;19:165–73.

    CAS  PubMed  Google Scholar 

  39. Martinsson T, Oda T, Fernvik E, Roempke K, Dalsgaard CJ, Svensjo E. Ropivacaine inhibits leukocyte rolling, adhesion and CD11b/CD18 expression. J Pharmacol Exp Ther. 1997;283:59–65.

    CAS  PubMed  Google Scholar 

  40. Lan W, Harmon DC, Wang JH, Shorten GD, Redmond PH. Activated endothelial interleukin-1beta, -6, and -8 concentrations and intercellular adhesion molecule-1 expression are attenuated by lidocaine. Anesth Analg. 2005;100:409–12.

    Article  CAS  PubMed  Google Scholar 

  41. Raucher D, Sheetz MP. Phospholipase C activation by anesthetics decreases membrane-cytoskeleton adhesion. J Cell Sci. 2001;114:3759–66.

    CAS  PubMed  Google Scholar 

  42. Li CY, Tsai CS, Hsu PC, Chueh SH, Wong CS, Ho ST. Lidocaine attenuates monocyte chemoattractant protein-1 production and chemotaxis in human monocytes: possible mechanisms for its effect on inflammation. Anesth Analg. 2003;97:1312–6.

    Article  PubMed  Google Scholar 

  43. Cassuto J, Sinclair R, Bonderovic M. Anti-inflammatory properties of local anesthetics and their present and potential clinical implications. Acta Anaesthesiol Scand. 2006;50:265–82.

    Article  CAS  PubMed  Google Scholar 

  44. Sinclair R, Eriksson AS, Gretzer C, Cassuto J, Thomsen P. Inhibitory effects of amide local anaesthetics on stimulus-induced human leukocyte metabolic activation, LTB4 release and IL-1 secretion in vitro. Acta Anaesthesiol Scand. 1993;37:159–65.

    Article  CAS  PubMed  Google Scholar 

  45. Gallos G, Jones DR, Nasr SH, Emala CW, Lee HT. Local anesthetics reduce mortality and protect against renal and hepatic dysfunction in murine septic peritonitis. Anesthesiology. 2004;101:902–11.

    Article  CAS  PubMed  Google Scholar 

  46. Lahav M, Levite M, Bassani L, et al. Lidocaine inhibits secretion of IL-8 and IL-1beta and stimulates secretion of IL-1 receptor antagonist by epithelial cells. Clin Exp Immunol. 2002;127:226–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Blumenthal S, Borgeat A, Pasch T, et al. Ropivacaine decreases inflammation in experimental endotoxin-induced lung injury. Anesthesiology. 2006;104:961–9.

    Article  CAS  PubMed  Google Scholar 

  48. Feng G, Liu S, Wang GL, Liu GJ. Lidocaine attenuates lipopolysaccharide-induced acute lung injury through inhibiting NF-kappaB activation. Pharmacology. 2008;81:32–40.

    Article  CAS  PubMed  Google Scholar 

  49. •• Piegeler T, Dull RO, Hu G, et al. Ropivacaine attenuates endotoxin plus hyperinflation-mediated acute lung injury via inhibition of early-onset Src-dependent signaling. BMC Anesthesiol. 2014;14:57. Ropivacaine reduces excess lung water, extravascular plasma equivalents, permeability index and myeloperoxidase activity.

  50. Johnson ER, Matthay MA. Acute lung injury: epidemiology, pathogenesis, and treatment. J Aerosol Med Pulm Drug Deliv. 2010;23:243–52.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bhattacharya J, Matthay MA. Regulation and repair of the alveolar-capillary barrier in acute lung injury. Annu Rev Physiol. 2013;75:593–615.

    Article  CAS  PubMed  Google Scholar 

  52. •• Piegeler T, Votta-Velis EG, Bakhshi FR, et al. Endothelial barrier protection by local anesthetics. Anesthesiology. 2014;120:1414–28. Ropivacaine and lidocaine attenuate tumour necrosis factor-α-induced neutrophil adhesion and endothelial hyperpermeability via a reduction of Akt, endothelial nitric oxide synthase and Src activation.

  53. •• Piegeler T, Votta-Velis EG, Liu G, et al. Antimetastatic potential of amide-linked local anesthetics: inhibition of lung adenocarcinoma cell migration and inflammatory Src signaling independent of sodium channel blockade. Anesthesiology. 2012;117:548–59. Lidocaine and ropivacaine inhibit inflammatory cytokine-signalling, proliferation and migration of human lung adenocarcinoma cells.

  54. Nicoud IB, Jones CM, Pierce JM, et al. Warm hepatic ischemia-reperfusion promotes growth of colorectal carcinoma micrometastases in mouse liver via matrix metalloproteinase-9 induction. Cancer Res. 2007;67:2720–8.

    Article  CAS  PubMed  Google Scholar 

  55. Muller-Edenborn B, Roth-Z’graggen B, Bartnicka K, et al. Volatile anesthetics reduce invasion of colorectal cancer cells through down-regulation of matrix metalloproteinase-9. Anesthesiology. 2012;117:293–301.

    Article  CAS  PubMed  Google Scholar 

  56. Martinsson T. Ropivacaine inhibits serum-induced proliferation of colon adenocarcinoma cells in vitro. J Pharmacol Exp Ther. 1999;288:660–4.

    CAS  PubMed  Google Scholar 

  57. Sakaguchi M, Kuroda Y, Hirose M. The antiproliferative effect of lidocaine on human tongue cancer cells with inhibition of the activity of epidermal growth factor receptor. Anesth Analg. 2006;102:1103–7.

    Article  CAS  PubMed  Google Scholar 

  58. •• Lucchinetti E, Awad AE, Rahman M, et al. Antiproliferative effects of local anesthetics on mesenchymal stem cells: potential implications for tumor spreading and wound healing. Anesthesiology. 2012;116:841–56. Local anaesthetics impaired proliferation, differentiation and respiration and were cytotoxic to murine mesenchymal stem cells in vitro.

  59. Chang YC, Liu CL, Chen MJ, et al. Local anesthetics induce apoptosis in human breast tumor cells. Anesth Analg. 2014;118:116–24.

    Article  CAS  PubMed  Google Scholar 

  60. Lirk P, Berger R, Hollmann MW, Fiegl H. Lidocaine time- and dose-dependently demethylates deoxyribonucleic acid in breast cancer cell lines in vitro. Br J Anaesth. 2012;109:200–7.

    Article  CAS  PubMed  Google Scholar 

  61. Werdehausen R, Braun S, Fazeli S, et al. Lipophilicity but not stereospecificity is a major determinant of local anaesthetic-induced cytotoxicity in human T-lymphoma cells. Eur J Anaesthesiol. 2012;29:35–41.

    Article  CAS  PubMed  Google Scholar 

  62. Peach G, Kim C, Zacharakis E, Purkayastha S, Ziprin P. Prognostic significance of circulating tumour cells following surgical resection of colorectal cancers: a systematic review. Br J Cancer. 2010;102:1327–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Dr. Bernhard Riedel wishes to thank Drs. Donal Buggy, Vijaya Gottumukkala and Erica Sloan for their kind assistance in the development of this issue and the reviewing of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Borgeat.

Additional information

This article is part of the Topical Collection on Cancer Anesthesia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borgeat, A., Schick, C. & Votta-Velis, G. Pharmacologic Factors: Anaesthetic Agents that May Influence Cancer Outcomes: Local Anaesthetics. Curr Anesthesiol Rep 5, 285–290 (2015). https://doi.org/10.1007/s40140-015-0112-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40140-015-0112-y

Keywords

Navigation