Skip to main content

Advertisement

Log in

Targeting the Immune System for Cancer Therapy: Lessons for Perioperative Management?

  • Cancer Anesthesia (B Riedel, Section Editor)
  • Published:
Current Anesthesiology Reports Aims and scope Submit manuscript

Abstract

The immune system involves a complex interplay between the host and its environment. Cancer cell growth requires immune tolerance in order to avoid rejection, this occurs despite tumour recognition by innate and adaptive immune components. As our understanding of the immune system and immunosurveillance improves, so too does our understanding of the complex mechanisms involved in tumour growth and local immunosuppression. Recent advances in tumour immunology and immunotherapy have lead to the development of an array of novel therapies with unprecedented efficacy in multiple tumour types, particularly in patients with metastatic melanoma. This review describes these advances in our understanding of the tumour-host interaction and discusses potential implications for patient care in the perioperative period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Thomas L. Cellular and humoral aspects of the hypersensitive states. New York: Hoeber-Harper; 1959.

    Google Scholar 

  2. Burnet M. The processes of control. Br Med J. 1957;1:779–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cheever MA, et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res. 2009;15(17):5323–37.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Porta MD, et al. Dendritic cells and vascular endothelial growth factor in colorectal cancer: correlations with clinicobiological findings. Oncology. 2005;68(2–3):276–84.

    Article  CAS  PubMed  Google Scholar 

  5. Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol. 2003;21:685–711.

    Article  CAS  PubMed  Google Scholar 

  6. Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol. 2012;12(4):269–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gyorki DE, et al. The delicate balance of melanoma immunotherapy. Clin Transl Immunology. 2013;2(8):e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. • Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565–70. This review defines the role of immune editing in tumorigenesis.

  9. Curiel TJ, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10(9):942–9.

    Article  CAS  PubMed  Google Scholar 

  10. Savage PA, Leventhal DS, Malchow S. Shaping the repertoire of tumor-infiltrating effector and regulatory T cells. Immunol Rev. 2014;259(1):245–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gattinoni L, et al. Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol. 2006;6(5):383–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Naito Y, et al. CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res. 1998;58(16):3491–4.

    CAS  PubMed  Google Scholar 

  13. Piersma SJ, et al. High number of intraepithelial CD8+ tumor-infiltrating lymphocytes is associated with the absence of lymph node metastases in patients with large early-stage cervical cancer. Cancer Res. 2007;67(1):354–61.

    Article  CAS  PubMed  Google Scholar 

  14. Nakano O, et al. Proliferative activity of intratumoral CD8(+) T-lymphocytes as a prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of antitumor immunity. Cancer Res. 2001;61(13):5132–6.

    CAS  PubMed  Google Scholar 

  15. Mahmoud SM, et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol. 2011;29(15):1949–55.

    Article  PubMed  Google Scholar 

  16. Fortes C, et al. Tumor-infiltrating lymphocytes predict cutaneous melanoma survival. J Transl Med. 2015;13:2066.

    Article  Google Scholar 

  17. Denkert C, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol. 2010;28(1):105–13.

    Article  CAS  PubMed  Google Scholar 

  18. Pardoll DM, Topalian SL. The role of CD4+ T cell responses in antitumor immunity. Curr Opin Immunol. 1998;10(5):588–94.

    Article  CAS  PubMed  Google Scholar 

  19. Antony PA, et al. CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J Immunol. 2005;174(5):2591–601.

    Article  CAS  PubMed  Google Scholar 

  20. Williams LM, Rudensky AY. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat Immunol. 2007;8(3):277–84.

    Article  CAS  PubMed  Google Scholar 

  21. Beyer M, Schultze JL. Regulatory T cells in cancer. Blood. 2006;108(3):804–11.

    Article  CAS  PubMed  Google Scholar 

  22. Chaudhary B, et al. Phenotypic alterations, clinical impact and therapeutic potential of regulatory T cells in cancer. Expert Opin Biol Ther. 2014;14(7):931–45.

    Article  CAS  PubMed  Google Scholar 

  23. Halvorsen EC, Mahmoud SM, Bennewith KL. Emerging roles of regulatory T cells in tumour progression and metastasis. Cancer Metastasis Rev. 2014;33(4):1025–41.

    Article  CAS  PubMed  Google Scholar 

  24. Kohrt HE, et al. Profile of immune cells in axillary lymph nodes predicts disease-free survival in breast cancer. PLoS Med. 2005;2(9):e284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gooden MJ, et al. The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer. 2011;105(1):93–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. • Galon J, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313(5795):1960–4. This seminal paper highlighted the key prognostic significance of tumour infiltration by immune cells.

  27. Schwartz RH. T cell anergy. Annu Rev Immunol. 2003;21:305–34.

    Article  CAS  PubMed  Google Scholar 

  28. Schietinger A, Greenberg PD. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol. 2014;35(2):51–60.

    Article  CAS  PubMed  Google Scholar 

  29. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Karasar P, Esendagli G. T helper responses are maintained by basal-like breast cancer cells and confer to immune modulation via upregulation of PD-1 ligands. Breast Cancer Res Treat. 2014;145(3):605–14.

    Article  CAS  PubMed  Google Scholar 

  31. Velu V, et al. Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature. 2009;458(7235):206–10.

    Article  CAS  PubMed  Google Scholar 

  32. Flies DB, et al. Blockade of the B7-H1/PD-1 pathway for cancer immunotherapy. Yale J Biol Med. 2011;84(4):409–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hirano F, et al. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res. 2005;65(3):1089–96.

    CAS  PubMed  Google Scholar 

  34. Brahmer JR, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Taube JM, et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med. 2012;4(127):127ra37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Blank C, Gajewski TF, Mackensen A. Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. Cancer Immunol Immunother. 2005;54(4):307–14.

    Article  CAS  PubMed  Google Scholar 

  37. Ghiotto M, et al. PD-L1 and PD-L2 differ in their molecular mechanisms of interaction with PD-1. Int Immunol. 2010;22(8):651–60.

    Article  CAS  PubMed  Google Scholar 

  38. Talmadge JE, Donkor M, Scholar E. Inflammatory cell infiltration of tumors: Jekyll or Hyde. Cancer Metastasis Rev. 2007;26(3–4):373–400.

    Article  PubMed  Google Scholar 

  39. Hagemann T, et al. Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases. Carcinogenesis. 2004;25(8):1543–9.

    Article  CAS  PubMed  Google Scholar 

  40. Eccles SA, Alexander P. Macrophage content of tumours in relation to metastatic spread and host immune reaction. Nature. 1974;250(5468):667–9.

    Article  CAS  PubMed  Google Scholar 

  41. Serafini P, Borrello I, Bronte V. Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol. 2006;16(1):53–65.

    Article  CAS  PubMed  Google Scholar 

  42. Stewart TJ, Smyth MJ. Improving cancer immunotherapy by targeting tumor-induced immune suppression. Cancer Metastasis Rev. 2011;30(1):125–40.

    Article  CAS  PubMed  Google Scholar 

  43. Zea AH, et al. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res. 2005;65(8):3044–8.

    Article  CAS  PubMed  Google Scholar 

  44. de Waal Malefyt R, Yssel H, de Vries JE. Direct effects of IL-10 on subsets of human CD4+ T cell clones and resting T cells. Specific inhibition of IL-2 production and proliferation. J Immunol. 1993;150(11):4754–65.

    CAS  PubMed  Google Scholar 

  45. Gallina G, et al. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest. 2006;116(10):2777–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Parmiani G, et al. Cytokines in cancer therapy. Immunol Lett. 2000;74(1):41–4.

    Article  CAS  PubMed  Google Scholar 

  47. Stewart TJ, Smyth MJ. Chemokine-chemokine receptors in cancer immunotherapy. Immunotherapy. 2009;1(1):109–27.

    Article  CAS  PubMed  Google Scholar 

  48. • Shankaran V, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410(6832):1107–11. This seminal paper highlights the role of the immune response in shaping an evolving tumour.

  49. Dunn GP, et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991–8.

    Article  CAS  PubMed  Google Scholar 

  50. Ohtani H. Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human colorectal cancer. Cancer Immun. 2007;7:4.

    PubMed  PubMed Central  Google Scholar 

  51. Siddiqui SA, et al. Tumor-infiltrating Foxp3-CD4+ CD25 + T cells predict poor survival in renal cell carcinoma. Clin Cancer Res. 2007;13(7):2075–81.

    Article  CAS  PubMed  Google Scholar 

  52. Kolbeck PC, et al. The relationships among tumor-infiltrating lymphocytes, histopathologic findings, and long-term clinical follow-up in renal cell carcinoma. Mod Pathol. 1992;5(4):420–5.

    CAS  PubMed  Google Scholar 

  53. Templeton AJ, McNamara MG, Šeruga B, et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J Natl Cancer Inst. 2014;106(6):dju124.

    Article  CAS  PubMed  Google Scholar 

  54. Paramanathan A, Saxena A, Morris DL. A systematic review and meta-analysis on the impact of pre-operative neutrophil lymphocyte ratio on long term outcomes after curative intent resection of solid tumours. Surg Oncol. 2014;23(1):31–9.

    Article  PubMed  Google Scholar 

  55. Aguirre-Ghiso JA. Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer. 2007;7(11):834–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Koebel CM, et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature. 2007;450(7171):903–7.

    Article  CAS  PubMed  Google Scholar 

  57. Teng MW, et al. Opposing roles for IL-23 and IL-12 in maintaining occult cancer in an equilibrium state. Cancer Res. 2012;72(16):3987–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mittal D, et al. New insights into cancer immunoediting and its three component phases–elimination, equilibrium and escape. Curr Opin Immunol. 2014;27:16–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rabson A. Really essential medical immunology. 2nd ed. Oxford UK: Blackwell Publishing Ltd.; 2005.

    Google Scholar 

  60. Vesely MD, et al. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29:235–71.

    Article  CAS  PubMed  Google Scholar 

  61. Fourcade J, et al. PD-1 is a regulator of NY-ESO-1-specific CD8+ T cell expansion in melanoma patients. J Immunol. 2009;182(9):5240–9.

    Article  CAS  PubMed  Google Scholar 

  62. Egberts F, et al. Metastatic melanoma of unknown primary resembles the genotype of cutaneous melanomas. Ann Oncol. 2014;25(1):246–50.

    Article  CAS  PubMed  Google Scholar 

  63. Quaglino P, et al. Vitiligo is an independent favourable prognostic factor in stage III and IV metastatic melanoma patients: results from a single-institution hospital-based observational cohort study. Ann Oncol. 2010;21(2):409–14.

    Article  CAS  PubMed  Google Scholar 

  64. Bhatia S, Tykodi SS, Thompson JA. Treatment of metastatic melanoma: an overview. Oncology (Williston Park). 2009;23(6):488–96.

    Google Scholar 

  65. • Rosenberg SA, et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med. 1985;313(23):1485–92. This was the first study to identify a use T cell modulation to achieve a tumour response.

  66. Atkins MB, et al. High-dose recombinant interleukin-2 therapy in patients with metastatic melanoma: long-term survival update. Cancer J Sci Am. 2000;6(Suppl 1):S11–4.

    PubMed  Google Scholar 

  67. • Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348(6230):56–61. This review provides clear perspective of a rapidly evolving field.

  68. Azuma M, et al. B70 antigen is a second ligand for CTLA-4 and CD28. Nature. 1993;366(6450):76–9.

    Article  CAS  PubMed  Google Scholar 

  69. Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 1995;182(2):459–65.

    Article  CAS  PubMed  Google Scholar 

  70. Peggs KS, Quezada SA, Allison JP. Cancer immunotherapy: co-stimulatory agonists and co-inhibitory antagonists. Clin Exp Immunol. 2009;157(1):9–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. •• Robert C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364(26):2517–26. This was the first trial to demonstrate a survival benefit in patients with metastatic disease in the first line setting.

  72. Prieto PA, et al. CTLA-4 blockade with ipilimumab: long-term follow-up of 177 patients with metastatic melanoma. Clin Cancer Res. 2012;18(7):2039–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang JC, et al. Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J Immunother. 2007;30(8):825–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hodi FS, et al. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc Natl Acad Sci USA. 2008;105(8):3005–10.

    Article  PubMed  PubMed Central  Google Scholar 

  75. van den Eertwegh AJ, et al. Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol. 2012;13(5):509–17.

    Article  CAS  PubMed  Google Scholar 

  76. Ahmadzadeh M, et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood. 2009;114(8):1537–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Robert C, Schachter J, Long GV, et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N Engl J Med. 2015.

  78. Postow MA, Chesney J, Pavlick AC, et al. Nivolumab and Ipilimumab versus Ipilimumab in Untreated Melanoma. N Engl J Med 2015.

  79. Snyder A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371(23):2189–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tumeh PC, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shahabi V, et al. Immune-priming of the tumor microenvironment by radiotherapy: rationale for combination with immunotherapy to improve anticancer efficacy. Am J Clin Oncol. 2015;38(1):90–7.

    Article  CAS  PubMed  Google Scholar 

  82. Knisely JP, et al. Radiosurgery for melanoma brain metastases in the ipilimumab era and the possibility of longer survival. J Neurosurg. 2012;117(2):227–33.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Postow MA, et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med. 2012;366(10):925–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Therasse P, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92(3):205–16.

    Article  CAS  PubMed  Google Scholar 

  85. Eisenhauer EA, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.

    Article  CAS  PubMed  Google Scholar 

  86. Hamid O. Kinetics of response to ipilimumab (MDX-010) in patints with stage 3/4 melanoma. J Clin Oncol. 2007;25(18S):8252.

    Google Scholar 

  87. Wolchok JD, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15(23):7412–20.

    Article  CAS  PubMed  Google Scholar 

  88. Postow MA. Current options and future directions in the systemic treatment of metastatic melanoma. J Community Support Oncol. 2014;12(1):20–6.

    Article  CAS  PubMed  Google Scholar 

  89. Gogas H, et al. Prognostic significance of autoimmunity during treatment of melanoma with interferon. N Engl J Med. 2006;354(7):709–18.

    Article  CAS  PubMed  Google Scholar 

  90. Phan GQ, et al. Factors associated with response to high-dose interleukin-2 in patients with metastatic melanoma. J Clin Oncol. 2001;19(15):3477–82.

    Article  CAS  PubMed  Google Scholar 

  91. Carthon BC, et al. Preoperative CTLA-4 blockade: tolerability and immune monitoring in the setting of a presurgical clinical trial. Clin Cancer Res. 2010;16(10):2861–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Neeman E, Ben-Eliyahu S. Surgery and stress promote cancer metastasis: new outlooks on perioperative mediating mechanisms and immune involvement. Brain Behav Immun. 2013;30(Suppl):S32–40.

    Article  PubMed  Google Scholar 

  93. Hiller J, Brodner G, Gottschalk A. Understanding clinical strategies that may impact tumour growth and metastatic spread at the time of cancer surgery. Best Pract Res Clin Anaesthesiol. 2013;27(4):427–39.

    Article  PubMed  Google Scholar 

  94. Horowitz M, et al. Exploiting the critical perioperative period to improve long-term cancer outcomes. Nat Rev Clin Oncol. 2015;12(4):213–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Exadaktylos AK, et al. Can anesthetic technique for primary breast cancer surgery affect recurrence or metastasis? Anesthesiology. 2006;105(4):660–4.

    Article  PubMed  Google Scholar 

  96. Kim R, et al. Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res. 2006;66(11):5527–36.

    Article  CAS  PubMed  Google Scholar 

  97. Uotila P. The role of cyclic AMP and oxygen intermediates in the inhibition of cellular immunity in cancer. Cancer Immunol Immunother. 1996;43(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  98. Landmann R. Beta-adrenergic receptors in human leukocyte subpopulations. Eur J Clin Invest. 1992;22(Suppl 1):30–6.

    PubMed  Google Scholar 

  99. Ben-Eliyahu S, et al. Suppression of NK cell activity and of resistance to metastasis by stress: a role for adrenal catecholamines and beta-adrenoceptors. NeuroImmunoModulation. 2000;8(3):154–64.

    Article  CAS  PubMed  Google Scholar 

  100. Martinet L, Poupot R, Fournie JJ. Pitfalls on the roadmap to gammadelta T cell-based cancer immunotherapies. Immunol Lett. 2009;124(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  101. Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 2010;22(2):231–7.

    Article  CAS  PubMed  Google Scholar 

  102. Costa C, et al. Cyclo-oxygenase 2 expression is associated with angiogenesis and lymph node metastasis in human breast cancer. J Clin Pathol. 2002;55(6):429–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Usman MW, et al. Chemopreventive effects of aspirin at a glance. Biochim Biophys Acta. 2015;1855(2):254–63.

    CAS  PubMed  Google Scholar 

  104. Sloan EK, et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res. 2010;70(18):7042–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lutgendorf SK, et al. Stress-related mediators stimulate vascular endothelial growth factor secretion by two ovarian cancer cell lines. Clin Cancer Res. 2003;9(12):4514–21.

    CAS  PubMed  Google Scholar 

  106. Magnon C, et al. Autonomic nerve development contributes to prostate cancer progression. Science. 2013;341(6142):1236361.

    Article  PubMed  Google Scholar 

  107. van der Bij GJ, et al. The perioperative period is an underutilized window of therapeutic opportunity in patients with colorectal cancer. Ann Surg. 2009;249(5):727–34.

    Article  PubMed  Google Scholar 

  108. Roche-Nagle G, et al. Antimetastatic activity of a cyclooxygenase-2 inhibitor. Br J Cancer. 2004;91(2):359–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Thaker PH, et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med. 2006;12(8):939–44.

    Article  CAS  PubMed  Google Scholar 

  110. Zheng Y, et al. Application of perioperative immunonutrition for gastrointestinal surgery: a meta-analysis of randomized controlled trials. Asia Pac J Clin Nutr. 2007;16(Suppl 1):253–7.

    PubMed  Google Scholar 

  111. Marik PE, Zaloga GP. Immunonutrition in high-risk surgical patients: a systematic review and analysis of the literature. J Parenter Enteral Nutr. 2010;34(4):378–86.

    Article  Google Scholar 

  112. Kurz A, Sessler DI, Lenhardt R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature Group. N Engl J Med. 1996;334(19):1209–15.

    Article  CAS  PubMed  Google Scholar 

  113. Beilin B, et al. Effects of mild perioperative hypothermia on cellular immune responses. Anesthesiology. 1998;89(5):1133–40.

    Article  CAS  PubMed  Google Scholar 

  114. Frank SM, et al. The catecholamine, cortisol, and hemodynamic responses to mild perioperative hypothermia. A randomized clinical trial. Anesthesiology. 1995;82(1):83–93.

    Article  CAS  PubMed  Google Scholar 

  115. Kavanagh T, Buggy DJ. Can anaesthetic technique effect postoperative outcome? Curr Opin Anaesthesiol. 2012;25(2):185–98.

    Article  CAS  PubMed  Google Scholar 

  116. Cata JP, et al. Inflammatory response, immunosuppression, and cancer recurrence after perioperative blood transfusions. Br J Anaesth. 2013;110(5):690–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Schriemer PA, Longnecker DE, Mintz PD. The possible immunosuppressive effects of perioperative blood transfusion in cancer patients. Anesthesiology. 1988;68(3):422–8.

    Article  CAS  PubMed  Google Scholar 

  118. Amato A, Pescatori M. Perioperative blood transfusions for the recurrence of colorectal cancer. Cochrane Database Syst Rev. 2006;1:CD005033.

  119. Krarup PM, et al. Anastomotic leak increases distant recurrence and long-term mortality after curative resection for colonic cancer: a nationwide cohort study. Ann Surg. 2014;259(5):930–8.

    Article  PubMed  Google Scholar 

  120. Mirnezami A, et al. Increased local recurrence and reduced survival from colorectal cancer following anastomotic leak: systematic review and meta-analysis. Ann Surg. 2011;253(5):890–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Bernhard Riedel wishes to thank Drs. Donal Buggy, Vijaya Gottumukkala and Erica Sloan for their kind assistance in the development of this issue and the reviewing of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Gyorki.

Additional information

This article is part of the Topical Collection on Cancer Anesthesia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koirala, R., Gyorki, D. Targeting the Immune System for Cancer Therapy: Lessons for Perioperative Management?. Curr Anesthesiol Rep 5, 257–267 (2015). https://doi.org/10.1007/s40140-015-0111-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40140-015-0111-z

Keywords

Navigation