Skip to main content

Advertisement

Log in

Tissue Repair and Epimorphic Regeneration: an Overview

  • Wound Healing and Tissue Repair (CC Yates, Section Editor)
  • Published:
Current Pathobiology Reports

Abstract

Purpose of the Review

This manuscript discusses wound healing as a component of epimorphic regeneration and the role of the immune system in this process.

Recent Findings

Epimorphic regeneration involves formation of a blastema, a mass of undifferentiated cells capable of giving rise to the regenerated tissues. The apical epithelial cap plays an important role in blastemal formation.

Summary

True regeneration is rarely observed in mammals. With the exception of transgenic strains, tissue repair in mammals usually leads to non-functional fibrotic tissue formation. In contrast, a number of lower order species including planarians, salamanders, and reptiles have the ability to overcome the burden of scarring and tissue loss through complex adaptations that allow them to regenerate various anatomic structures through epimorphic regeneration. Blastemal cells have been suggested to originate via various mechanisms including dedifferentiation, transdifferentiation, migration of pre-existing adult stem cell niches, and combinations of these.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Michalopoulos G, Cianciulli HD, Novotny AR, Kligerman AD, Strom SC, Jirtle RL. Liver regeneration studies with rat hepatocytes in primary culture. Cancer Res. 1982;42(11):4673–82. http://cancerres.aacrjournals.org/content/42/11/4673.abstract

    CAS  PubMed  Google Scholar 

  2. Steinberg B. Bone marrow regeneration in experimental benzene intoxication. Blood. 1949;4(5):550–6. http://www.bloodjournal.org/content/4/5/550.abstract

    CAS  PubMed  Google Scholar 

  3. Barker N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol. 2014;15(1):19–33. https://doi.org/10.1038/nrm3721.

    Article  CAS  PubMed  Google Scholar 

  4. Mimeault M, Hauke R, Batra SK. Stem cells: a revolution in therapeutics—recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther. 2007;82(3):252–64. https://doi.org/10.1038/sj.clpt.6100301.

    Article  CAS  PubMed  Google Scholar 

  5. Broughton G, Janis JE, Attinger CE. The basic science of wound healing. Plast Reconstr Surg. 2006;117(7 Suppl):12S–34S. https://doi.org/10.1097/01.prs.0000225430.42531.c2.

    Article  CAS  PubMed  Google Scholar 

  6. Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation. 1990;81(4):1161–72. http://circ.ahajournals.org/content/81/4/1161.abstract

    Article  CAS  PubMed  Google Scholar 

  7. Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42(6):551–5. https://doi.org/10.1016/j.injury.2011.03.031.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fausto N, Campbell JS, Riehle KJ. Liver regeneration. Hepatology. 2006;43(2 SUPPL. 1) https://doi.org/10.1002/hep.20969.

  9. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453(7193):314–21. https://doi.org/10.1038/nature07039.

    Article  CAS  PubMed  Google Scholar 

  10. Maginnis TL. The costs of autotomy and regeneration in animals: a review and framework for future research. Behav Ecol. 2006;17(5):857–72. https://doi.org/10.1093/beheco/arl010.

    Article  Google Scholar 

  11. Xue M, Jackson CJ. Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv Wound Care. 2015;4(3):119–36. https://doi.org/10.1089/wound.2013.0485.

    Article  Google Scholar 

  12. Reichman DE, Greenberg JA. Reducing surgical site infections: a review. Rev Obstet Gynecol. 2009;2(4):212–21. https://doi.org/10.3909/riog0084.

    PubMed  PubMed Central  Google Scholar 

  13. Hantash BM, Zhao L, Knowles JA, Lorenz HP. Adult and fetal wound healing. Front Biosci. 2008;13:51–61. https://doi.org/10.2741/2559.

    Article  CAS  PubMed  Google Scholar 

  14. Bely AE, Nyberg KG. Evolution of animal regeneration: re-emergence of a field. Trends Ecol Evol. 2010;25(3):161–70. https://doi.org/10.1016/j.tree.2009.08.005.

    Article  PubMed  Google Scholar 

  15. Bely AE. Evolutionary loss of animal regeneration: pattern and process. Integr Comp Biol. 2010;50:515–27. https://doi.org/10.1093/icb/icq118.

    Article  PubMed  Google Scholar 

  16. Bosch TCG. Why polyps regenerate and we don’t: towards a cellular and molecular framework for hydra regeneration. Dev Biol. 2007;303(2):421–33. https://doi.org/10.1016/j.ydbio.2006.12.012.

    Article  CAS  PubMed  Google Scholar 

  17. Elliott SA, Sánchez Alvarado A. The history and enduring contributions of planarians to the study of animal regeneration. Wiley Interdiscip Rev Dev Biol. 2013;2(3):301–26. https://doi.org/10.1002/wdev.82.

    Article  CAS  PubMed  Google Scholar 

  18. Ben Khadra Y, Ferrario C, Di Benedetto C, et al. Wound repair during arm regeneration in the red starfish Echinaster sepositus. Wound Repair Regen. 2015;23(4):611–22. https://doi.org/10.1111/wrr.12333.

    Article  PubMed  Google Scholar 

  19. Kizil C, Kaslin J, Kroehne V, Brand M. Adult neurogenesis and brain regeneration in zebrafish. Dev Neurobiol. 2012;72(3):429–61. https://doi.org/10.1002/dneu.20918.

    Article  PubMed  Google Scholar 

  20. Kang J, Hu J, Karra R, et al. Modulation of tissue repair by regeneration enhancer elements. Nature. 2016;532(7598):201–6. https://doi.org/10.1038/nature17644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. •• Sandoval-Guzmán T, Wang H, Khattak S, et al. Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species. Cell Stem Cell. 2014;14(2):174–87. https://doi.org/10.1016/j.stem.2013.11.007. This study is important because it highlights different blastema formation mechanims in closely related species.

    Article  PubMed  Google Scholar 

  22. Kragl M, Knapp D, Nacu E, et al. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature. 2009;460(7251):60–5. https://doi.org/10.1038/nature08152.

    Article  CAS  PubMed  Google Scholar 

  23. Tsonis PA, Madhavan M, Tancous EE, Del Rio-Tsonis K. A newt’s eye view of lens regeneration. Int J Dev Biol. 2004;48(8–9):975–80. https://doi.org/10.1387/ijdb.041867pt.

    Article  PubMed  Google Scholar 

  24. Maden M, Manwell LA, Ormerod BK. Proliferation zones in the axolotl brain and regeneration of the telencephalon. Neural Dev. 2013;8:1. https://doi.org/10.1186/1749-8104-8-1.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Berg DA, Kirkham M, Beljajeva A, et al. Efficient regeneration by activation of neurogenesis in homeostatically quiescent regions of the adult vertebrate brain. Development. 2010;137(24):4127–34. https://doi.org/10.1242/dev.055541.

    Article  CAS  PubMed  Google Scholar 

  26. Parish CL, Beljajeva A, Arenas E, Simon A. Midbrain dopaminergic neurogenesis and behavioural recovery in a salamander lesion-induced regeneration model. Development. 2007;134(15):2881–7. https://doi.org/10.1242/dev.002329.

    Article  CAS  PubMed  Google Scholar 

  27. • Godwin JW, Debuque R, Salimova E, Rosenthal NA. Heart regeneration in the salamander relies on macrophage-mediated control of fibroblast activation and the extracellular landscape. NPJ Regen Med. 2017;2(1):22. https://doi.org/10.1038/s41536-017-0027-y. This study is important because it highlights the importance of the immune system in epimorphic regeneration.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lozito TP, Tuan RS. Lizard tail regeneration: regulation of two distinct cartilage regions by Indian hedgehog. Dev Biol. 2015;399(2):249–62. https://doi.org/10.1016/j.ydbio.2014.12.036.

    Article  CAS  PubMed  Google Scholar 

  29. Lozito TP, Tuan RS, Alibardi L, et al. Lizard tail skeletal regeneration combines aspects of fracture healing and blastema-based regeneration. Development. 2016;143(16):2946–57. https://doi.org/10.1242/dev.129585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reddien PW, Alvarado AS. Fundamentals of planarian regeneration. Annu Rev Cell Dev Biol. 2004;20(1):725–57. https://doi.org/10.1146/annurev.cellbio.20.010403.095114.

    Article  CAS  PubMed  Google Scholar 

  31. Stone JS, Cotanche DA. Hair cell regeneration in the avian auditory epithelium. Int J Dev Biol. 2007;51(6–7):633–47. https://doi.org/10.1387/ijdb.072408js.

    Article  CAS  PubMed  Google Scholar 

  32. Clark LD, Clark RK, Heber-Katz E. A new murine model for mammalian wound repair and regeneration. Clin Immunol Immunopathol. 1998;88(1):35–45. https://doi.org/10.1006/clin.1998.4519.

    Article  CAS  PubMed  Google Scholar 

  33. Seifert AW, Kiama SG, Seifert MG, Goheen JR, Palmer TM, Maden M. Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature. 2012;489(7417):561–5. https://doi.org/10.1038/nature11499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bedelbaeva K, Snyder A, Gourevitch D, et al. Lack of p21 expression links cell cycle control and appendage regeneration in mice. Proc Natl Acad Sci U S A. 2010;107(13):5845–50. https://doi.org/10.1073/pnas.1000830107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shyh-Chang N, Zhu H, Yvanka de Soysa T, et al. Lin28 enhances tissue repair by reprogramming cellular metabolism. Cell. 2013;155(4):778–92. https://doi.org/10.1016/j.cell.2013.09.059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Goss RJ, Grimes LN. Epidermal downgrowths in regenerating rabbit ear holes. J Morphol. 1975;146(4):533–42. https://doi.org/10.1002/jmor.1051460408.

    Article  CAS  PubMed  Google Scholar 

  37. Javanmard AOS, Bahrami AR, Mahmoodi Z, Saeinasab M, Mahdavi SHahri N, Moghaddam MM. Studying the expression patterns of OCT4 and SOX2. Proteins in regenerating rabbit ear tissue. World Rabbit Sci. 2016;24(1):155–64.

    Article  Google Scholar 

  38. Price J, Faucheux C, Allen S. Deer antlers as a model of mammalian regeneration. Curr Top Dev Biol. 2005;67:1–48. https://doi.org/10.1016/S0070-2153(05)67001-9.

    Article  CAS  PubMed  Google Scholar 

  39. Godwin J. The promise of perfect adult tissue repair and regeneration in mammals: learning from regenerative amphibians and fish. BioEssays. 2014;36(9):861–71. https://doi.org/10.1002/bies.201300144.

    Article  CAS  PubMed  Google Scholar 

  40. Mescher AL, Neff AW, King MW. Changes in the inflammatory response to injury and its resolution during the loss of regenerative capacity in developing Xenopus limbs. PLoS One. 2013;8(11) https://doi.org/10.1371/journal.pone.0080477.

  41. Morgan TH. Regeneration. New York: Macmillan; 1901.

    Book  Google Scholar 

  42. Agata K, Saito Y, Nakajima E. Unifying principles of regeneration I: epimorphosis versus morphallaxis. Develop Growth Differ. 2007;49(2):73–8. https://doi.org/10.1111/j.1440-169X.2007.00919.x.

    Article  Google Scholar 

  43. • Simkin J, Sammarco MC, Dawson LA, Schanes PP, Yu L, Muneoka K. The mammalian blastema: regeneration at our fingertips. Regeneration. 2015:93–105. https://doi.org/10.1002/reg2.36. This study highlights blastema formation in mammals.

  44. Gilbert EAB, Delorme SL, Vickaryous MK. The regeneration blastema of lizards: an amniote model for the study of appendage replacement. Regeneration. 2015;2(2):45–53. https://doi.org/10.1002/reg2.31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McCusker C, Bryant SV, Gardiner DM. The axolotl limb blastema: cellular and molecular mechanisms driving blastema formation and limb regeneration in tetrapods. Regeneration. 2015;2(2):54–71. https://doi.org/10.1002/reg2.32.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kikuchi K, Holdway JE, Werdich AA, et al. Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature. 2010;464(7288):601–5. https://doi.org/10.1038/nature08804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jopling C, Sleep E, Raya M, Martí M, Raya A, Belmonte JCI. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature. 2010;464(7288):606–9. https://doi.org/10.1038/nature08899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lozito TP, Tuan RS. Lizard tail regeneration as an instructive model of enhanced healing capabilities in an adult amniote. Connect Tissue Res. 2017;58(2):145–54. https://doi.org/10.1080/03008207.2016.1215444.

    Article  CAS  PubMed  Google Scholar 

  49. Seifert A, Monaghan J, Voss R, Maden M. Skin regeneration in adult axolotls: a blueprint for scar-free healing in vertebrates. PLoS One. 2012;7(4) https://doi.org/10.1371/journal.pone.0032875.

  50. Breedis C. Regeneration of hair follicles and sebaceous glands from the epithelium of scars in the rabbit. Cancer Res. 1954;14(8):575–9.

    CAS  PubMed  Google Scholar 

  51. Ito M, Yang Z, Andl T, et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature. 2007;447(7142):316–20. https://doi.org/10.1038/nature05766.

    Article  CAS  PubMed  Google Scholar 

  52. Dang CM, Beanes SR, Lee H, Zhang X, Soo C, Ting K. Scarless fetal wounds are associated with an increased matrix metalloproteinase-to-tissue-derived inhibitor of metalloproteinase ratio. Plast Reconstr Surg. 2003;111(7):2273–85. https://doi.org/10.1097/01.PRS.0000060102.57809.DA.

    Article  PubMed  Google Scholar 

  53. Soo C, Shaw WW, Zhang X, Longaker MT, Howard EW, Ting K. Differential expression of matrix metalloproteinases and their tissue-derived inhibitors in cutaneous wound repair. Plast Reconstr Surg. 2000;105(2):638–47. http://www.ncbi.nlm.nih.gov/pubmed/10697171%5Cn; http://graphics.tx.ovid.com/ovftpdfs/FPDDNCLBEAIHGE00/fs047/ovft/live/gv024/00006534/00006534-200002000-00024.pdf

    Article  CAS  PubMed  Google Scholar 

  54. Cox PG. Some aspects of tail regeneration in the lizard, Anolis carolinensis. I. A description based on histology and autoradiography. J Exp Zool. 1969;171(2):127–49. https://doi.org/10.1002/jez.1401710202.

    Article  Google Scholar 

  55. McLean KE, Vickaryous MK. A novel amniote model of epimorphic regeneration: the leopard gecko. BMC Dev Biol. 2011;11(1):50. https://doi.org/10.1186/1471-213X-11-50.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Salpeter MM, Singer M. Differentiation of the submicroscopic adepidermal membrane during limb regeneration in adult Triturus, including a note on the use of the term basement membrane. Anat Rec. 1960;136:27–39.

    Article  CAS  PubMed  Google Scholar 

  57. Tassava RA, Johnson-Wint B, Gross J. Regenerate epithelium and skin glands of the adult newt react to the same monoclonal antibody. J Exp Zool. 1986;239(2):229–40. https://doi.org/10.1002/jez.1402390210.

    Article  CAS  PubMed  Google Scholar 

  58. Goldhamer DJ, Tomlinson BL, Tassava RA. A developmentally regulated wound epithelial antigen of the newt limb regenerate is also present in a variety of secretory/transport cell types. Dev Biol. 1989;135(2):392–404.

    Article  CAS  PubMed  Google Scholar 

  59. Thornton CS. Influence of an eccentric epidermal cap on limb regeneration in Amblystoma larvae. Dev Biol. 1960;2(6):551–69. https://doi.org/10.1016/0012-1606(60)90054-3.

    Article  CAS  PubMed  Google Scholar 

  60. Brockes JP. Amphibian limb regeneration: rebuilding a complex structure. Science (80-). 1997;276(5309):81–7. https://doi.org/10.1126/science.276.5309.81.

    Article  CAS  Google Scholar 

  61. Christensen RN, Tassava RA. Apical epithelial cap morphology and fibronectin gene expression in regenerating axolotl limbs. Dev Dyn. 2000;217(2):216–24. https://doi.org/10.1002/(SICI)1097-0177(200002)217:2<216::AID-DVDY8>3.0.CO;2-8.

    Article  CAS  PubMed  Google Scholar 

  62. Satoh A, Bryant SV, Gardiner DM. Nerve signaling regulates basal keratinocyte proliferation in the blastema apical epithelial cap in the axolotl (Ambystoma mexicanum). Dev Biol. 2012;366(2):374–81. https://doi.org/10.1016/j.ydbio.2012.03.022.

    Article  CAS  PubMed  Google Scholar 

  63. Onda H, Tassava RA. Expression of the 9G1 antigen in the apical cap of axolotl regenerates requires nerves and mesenchyme. J Exp Zool. 1991;257(3):336–49. https://doi.org/10.1002/jez.1402570307.

    Article  CAS  PubMed  Google Scholar 

  64. Stocum DL, Dearlove GE. Epidermal-mesodermal interaction during morphogenesis of the limb regeneration blastema in larval salamanders. J Exp Zool. 1972;181(1):49–61. https://doi.org/10.1002/jez.1401810106.

    Article  Google Scholar 

  65. Endo T, Bryant SV, Gardiner DM. A stepwise model system for limb regeneration. Dev Biol. 2004;270(1):135–45. https://doi.org/10.1016/j.ydbio.2004.02.016.

    Article  CAS  PubMed  Google Scholar 

  66. Singer M. The influence of the nerve in regeneration of the amphibian extremity. Q Rev Biol. 1952;27(2):169–200.

    Article  CAS  PubMed  Google Scholar 

  67. Kumar A, Godwin JW, Gates PB, Garza-Garcia AA, Brockes JP. Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science. 2007;318(5851):772–7. https://doi.org/10.1126/science.1147710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Singer M, Rzehak K, Maier CS. The relation between the caliber of the axon and the trophic activity of nerves in limb regeneration. J Exp Zool. 1967;166(1):89–97. https://doi.org/10.1002/jez.1401660110.

    Article  CAS  PubMed  Google Scholar 

  69. Bryant SV, French V, Bryant PJ. Distal regeneration and symmetry. Science. 1981;212(4498):993–1002. https://doi.org/10.1126/science.212.4498.993.

    Article  CAS  PubMed  Google Scholar 

  70. French V, Bryant PJ, Bryant SV. Pattern regulation in epimorphic fields. Science. 1976;193(4257):969–81. https://doi.org/10.1126/science.948762.

    Article  CAS  PubMed  Google Scholar 

  71. Woodland WNF. Memoirs: some observations on caudal autotomy and regeneration in the gecko (Hemidactylus flaviviridis, Rppel), with notes on the tails of Sphenodon and Pygopus. Q J Microsc Sci. 1920;s2–65(257):63–100. http://jcs.biologists.org/content/s2-65/257/63.abstract

    Google Scholar 

  72. Bellairs AD, Bryant SV: Autotomy and regeneration in reptiles (Development B). In The Biology Of The Reptilia, Volume 15 Edited by: Gans C, Billet F. New York: John Wiley & Sons, Inc. 1985;303-410.

  73. Werner YL. Regeneration of the caudal axial skeleton in a gekkonid lizard ( Hemidactylus ) with particular reference to the ‘latent’ period. Acta Zool. 1967;48(1–2):103–25. https://doi.org/10.1111/j.1463-6395.1967.tb00134.x.

    Article  Google Scholar 

  74. Delorme SL, Lungu IM, Vickaryous MK. Scar-free wound healing and regeneration following tail loss in the leopard gecko, Eublepharis macularius. Anat Rec Adv Integr Anat Evol Biol. 2012;295(10):1575–95. https://doi.org/10.1002/ar.22490.

    Article  CAS  Google Scholar 

  75. Gourevitch DL, Clark L, Bedelbaeva K, Leferovich J, Heber-Katz E. Dynamic changes after murine digit amputation: the MRL mouse digit shows waves of tissue remodeling, growth, and apoptosis. Wound Repair Regen. 2009;17(3):447–55. https://doi.org/10.1111/j.1524-475X.2009.00492.x.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Fernando WA, Leininger E, Simkin J, et al. Wound healing and blastema formation in regenerating digit tips of adult mice. Dev Biol. 2011;350(2):301–10. https://doi.org/10.1016/j.ydbio.2010.11.035.

    Article  CAS  PubMed  Google Scholar 

  77. Slack JMW. Amphibian muscle regeneration - dedifferentiation or satellite cells? Trends Cell Biol. 2006;16(6):273–5. https://doi.org/10.1016/j.tcb.2006.04.007.

    Article  CAS  PubMed  Google Scholar 

  78. Nye HLD, Cameron JA, Chernoff EAG, Stocum DL. Regeneration of the urodele limb: a review. Dev Dyn. 2003;226(2):280–94. https://doi.org/10.1002/dvdy.10236.

    Article  PubMed  Google Scholar 

  79. Jopling C, Boue S, Belmonte JCI. Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol. 2011;12(2):79–89. https://doi.org/10.1038/nrm3043.

    Article  CAS  PubMed  Google Scholar 

  80. Hay ED. Electron microscopic observations of muscle dedifferentiation in regenerating Amblystoma limbs. Dev Biol. 1959;1(6):555–85. https://doi.org/10.1016/0012-1606(59)90018-1.

    Article  Google Scholar 

  81. Namenwirth M. The inheritance of cell differentiation during limb regeneration in the axolotl. Dev Biol. 1974;41(1):42–56. https://doi.org/10.1016/0012-1606(74)90281-4.

    Article  CAS  PubMed  Google Scholar 

  82. Chen Z-L, Yu W-M, Strickland S. Peripheral regeneration. Annu Rev Neurosci. 2007;30(1):209–33. https://doi.org/10.1146/annurev.neuro.30.051606.094337.

    Article  PubMed  Google Scholar 

  83. Mirsky R, Woodhoo A, Parkinson DB, Arthur-Farraj P, Bhaskaran A, Jessen KR. Novel signals controlling embryonic Schwann cell development, myelination and dedifferentiation. J Peripher Nerv Syst. 2008;13:122–35. https://doi.org/10.1111/j.1529-8027.2008.00168.x.

    Article  PubMed  Google Scholar 

  84. Tanaka EM, Gann AAF, Gates PB, Brockes JP. Newt myotubes reenter the cell cycle by phosphorylation of the retinoblastoma protein. J Cell Biol. 1997;136(1):155–65. https://doi.org/10.1083/jcb.136.1.155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Thitoff AR, Call MK, Del Rio-Tsonis K, Tsonis PA. Unique expression patterns of the retinoblastoma (Rb) gene in intact and lens regeneration-undergoing newt eyes. Anat Rec A Discov Mol Cell Evol Biol. 2003;271(August 2002):185–8. https://doi.org/10.1002/ar.a.10023.

    Article  PubMed  Google Scholar 

  86. Maki N, Martinson J, Nishimura O, et al. Expression profiles during dedifferentiation in newt lens regeneration revealed by expressed sequence tags. Mol Vis. 2010;16:72–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kahn EB, Simpson SB. Satellite cells in mature, uninjured skeletal muscle of the lizard tail. Dev Biol. 1974;37(1):219–23. https://doi.org/10.1016/0012-1606(74)90181-X.

    Article  CAS  PubMed  Google Scholar 

  88. Alibardi L. Immunolocalization of Nestin in the lizard Podarcis muralis indicates up-regulation during the process of tail regeneration and epidermal differentiation. Ann Anat - Anat Anzeiger. 2014;196(2–3):135–43. https://doi.org/10.1016/j.aanat.2013.12.004.

    Article  Google Scholar 

  89. Zhou Y, Xu Q, Li D, et al. Early neurogenesis during caudal spinal cord regeneration in adult Gekko japonicus. J Mol Histol. 2013;44(3):291–7. https://doi.org/10.1007/s10735-012-9466-3.

    Article  CAS  PubMed  Google Scholar 

  90. Anton HJ. The origin of blastema cells and protein synthesis during forelimb regeneration in Triturus. In Regeneration in Animals Edited by: Kiortsis V, Trampusch HAL. Amsterdam: North-Holland Pub Co. 1965;377-395.

  91. Burgess AMC. The developmental potentialities of regeneration blastema cell nuclei as determined by nuclear transplantation. J Embryol Exp Morpholog. 1967;18(1):27–41. http://dev.biologists.org/content/18/1/27.abstract

    CAS  Google Scholar 

  92. Zanier E, Bordoni B. A multidisciplinary approach to scars: a narrative review. J Multidiscip Healthc. 2015;8:359–63. https://doi.org/10.2147/JMDH.S87845.

    PubMed  PubMed Central  Google Scholar 

  93. Burlacu A. Dupuytren’s contracture: a new perspective on treatment. Maedica. 2010;5(1):67–8. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150092/

    PubMed  PubMed Central  Google Scholar 

  94. Goel A, Shrivastava P. Post-burn scars and scar contractures. Indian J Plast Surg. 2010;43(Suppl):S63–71. https://doi.org/10.4103/0970-0358.70724.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Rabello FB, Souza CD, Júnior JAF. Update on hypertrophic scar treatment. Clinics. 2014;69(8):565–73. https://doi.org/10.6061/clinics/2014(08)11.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Londono R, Badylak SF. Regenerative medicine strategies for esophageal repair. Tissue Eng Part B Rev. 2015;21(4):393–410. https://doi.org/10.1089/ten.TEB.2015.0014.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Cojocaru M, Cojocaru IM, Silosi I, Vrabie CD. Pulmonary manifestations of systemic autoimmune diseases. Maedica. 2011;6(3):224–9. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3282547/

    PubMed  PubMed Central  Google Scholar 

  98. Mescher AL, Neff AW. Regenerative capacity and the developing immune system. Adv Biochem Eng Biotechnol. 2005;93:39–66.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas P. Lozito.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical Collection on Wound Healing and Tissue Repair

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Londono, R., Sun, A.X., Tuan, R.S. et al. Tissue Repair and Epimorphic Regeneration: an Overview. Curr Pathobiol Rep 6, 61–69 (2018). https://doi.org/10.1007/s40139-018-0161-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-018-0161-2

Keywords

Navigation