Skip to main content

Advertisement

Log in

Targeting the Microbiota, From Irritable Bowel Syndrome to Mood Disorders: Focus on Probiotics and Prebiotics

  • Microbiome and Tissue Homeostasis (AS Neish and R Jones, Section Editors)
  • Published:
Current Pathobiology Reports

Abstract

Purpose of Review

The crosstalk between the gut and the brain has revealed a complex communication system responsible for maintaining a proper gastrointestinal homeostasis as well as affect emotional mood and cognitive functions. Recent research has revealed that beneficial manipulation of the microbiota by probiotics and prebiotics represents an emerging and novel strategy for the treatment of a large spectrum of diseases ranging from visceral pain to mood disorders. The review critically evaluates current knowledge of the effects exerted by both probiotics and prebiotics in irritable bowel syndrome (IBS) and mood disorders such as anxiety and depression.

Recent Findings

Relevant literature was identified through a search of MEDLINE via PubMed using the following words, “probiotics”, “prebiotics”, “microbiota”, and “gut-brain axis” in combination with “stress”, “depression”, “IBS”, and “anxiety”. A number of trials have shown efficacy of probiotics and prebiotics in ameliorating both IBS-related symptoms and emotional states. However, limitations have been found especially due to the small number of clinical studies, studies’ design, patient sample size, and placebo effect.

Summary

Nonetheless, current finding supports the view that beneficial manipulation of the microbiota through both probiotics and prebiotics intake represents a novel attractive strategy to treat gut-brain axis disorders such as IBS and depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. •• Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell. 2016;164(3):337–40. https://doi.org/10.1016/j.cell.2016.01.013. This study provides the most updated description of the ratio between the number of bacteria and human cells in our bodies.

    Article  CAS  PubMed  Google Scholar 

  2. Dinan TG, Cryan JF. The microbiome-gut-brain axis in health and disease. Gastroenterol Clin N Am. 2017;46(1):77–89. https://doi.org/10.1016/j.gtc.2016.09.007.

    Article  Google Scholar 

  3. Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut. Science. 2001;292(5519):1115–8. https://doi.org/10.1126/science.1058709.

    Article  CAS  PubMed  Google Scholar 

  4. Backhed F, Ley RE, Sonnenburg JL, et al. Host-bacterial mutualism in the human intestine. Science. 2005;307(5717):1915–20. https://doi.org/10.1126/science.1104816.

    Article  PubMed  Google Scholar 

  5. Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol. 2010;10(3):159–69. https://doi.org/10.1038/nri2710.

    Article  CAS  PubMed  Google Scholar 

  6. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, et al. Host-gut microbiota metabolic interactions. Science. 2012;336(6086):1262–7. https://doi.org/10.1126/science.1223813.

    Article  CAS  PubMed  Google Scholar 

  7. Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489(7415):242–9. https://doi.org/10.1038/nature11552.

    Article  CAS  PubMed  Google Scholar 

  8. Foster JA, McVey Neufeld KA. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 2013;36(5):305–12. https://doi.org/10.1016/j.tins.2013.01.005.

    Article  CAS  PubMed  Google Scholar 

  9. Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol. 2012;10(11):735–42. https://doi.org/10.1038/nrmicro2876.

    Article  CAS  PubMed  Google Scholar 

  10. Gareau MG. Microbiota-gut-brain axis and cognitive function. Adv Exp Med Biol. 2014;817:357–71. https://doi.org/10.1007/978-1-4939-0897-4_16.

    Article  CAS  PubMed  Google Scholar 

  11. Gareau MG. Cognitive function and the microbiome. Int Rev Neurobiol. 2016;131:227–46. https://doi.org/10.1016/bs.irn.2016.08.001.

    Article  CAS  PubMed  Google Scholar 

  12. Moloney RD, Johnson AC, O'Mahony SM, Dinan TG, Greenwood-van Meerveld B, Cryan JF. Stress and the microbiota-gut-brain axis in visceral pain: relevance to irritable bowel syndrome. CNS Neurosci Ther. 2016;22(2):102–17. https://doi.org/10.1111/cns.12490.

    Article  PubMed  Google Scholar 

  13. Pusceddu MM, El Aidy S, Crispie F, O’Sullivan O, Cotter P, Stanton C, et al. N-3 polyunsaturated fatty acids (PUFAs) reverse the impact of early-life stress on the gut microbiota. PLoS One. 2015;10(10):e0139721. https://doi.org/10.1371/journal.pone.0139721.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Emge JR, Huynh K, Miller EN, Kaur M, Reardon C, Barrett KE, et al. Modulation of the microbiota-gut-brain axis by probiotics in a murine model of inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol. 2016;310(11):G989–98. https://doi.org/10.1152/ajpgi.00086.2016.

    Article  PubMed  Google Scholar 

  15. Gareau MG, Sherman PM, Walker WA. Probiotics and the gut microbiota in intestinal health and disease. Nat Rev Gastroenterol Hepatol. 2010;7(9):503–14. https://doi.org/10.1038/nrgastro.2010.117.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun. 2015;48:186–94. https://doi.org/10.1016/j.bbi.2015.03.016.

    Article  PubMed  Google Scholar 

  17. •• Kelly JR, Borre Y, OB C, et al. Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res. 2016;82:109–18. https://doi.org/10.1016/j.jpsychires.2016.07.019. This study shows that faecal microbiota transplantation from depressed patients into rodents can induce certain features characteristic of depression in the recipient animals.

    Article  PubMed  Google Scholar 

  18. Singh VP, Sharma J, Babu S, Rizwanulla, Singla A. Role of probiotics in health and disease: a review. J Pak Med Assoc. 2013;63(2):253–7.

    PubMed  Google Scholar 

  19. O'Mahony L, McCarthy J, Kelly P, et al. Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology. 2005;128(3):541–51. https://doi.org/10.1053/j.gastro.2004.11.050.

    Article  PubMed  Google Scholar 

  20. Whorwell PJ, Altringer L, Morel J, Bond Y, Charbonneau D, O'Mahony L, et al. Efficacy of an encapsulated probiotic Bifidobacterium infantis 35624 in women with irritable bowel syndrome. Am J Gastroenterol. 2006;101(7):1581–90. https://doi.org/10.1111/j.1572-0241.2006.00734.x.

    Article  PubMed  Google Scholar 

  21. Agrawal A, Houghton LA, Morris J, et al. Clinical trial: the effects of a fermented milk product containing Bifidobacterium lactis DN-173 010 on abdominal distension and gastrointestinal transit in irritable bowel syndrome with constipation. Aliment Pharmacol Ther. 2009;29(1):104–14. https://doi.org/10.1111/j.1365-2036.2008.03853.x.

    Article  CAS  PubMed  Google Scholar 

  22. Guyonnet D, Chassany O, Ducrotte P, et al. Effect of a fermented milk containing Bifidobacterium animalis DN-173 010 on the health-related quality of life and symptoms in irritable bowel syndrome in adults in primary care: a multicentre, randomized, double-blind, controlled trial. Aliment Pharmacol Ther. 2007;26(3):475–86. https://doi.org/10.1111/j.1365-2036.2007.03362.x.

    Article  CAS  PubMed  Google Scholar 

  23. Roberts LM, McCahon D, Holder R, Wilson S, Hobbs FDR. A randomised controlled trial of a probiotic “functional food” in the management of irritable bowel syndrome. BMC Gastroenterol. 2013;13(1):45. https://doi.org/10.1186/1471-230X-13-45.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ducrotte P, Sawant P, Jayanthi V. Clinical trial: Lactobacillus plantarum 299v (DSM 9843) improves symptoms of irritable bowel syndrome. World J Gastroenterol. 2012;18(30):4012–8. https://doi.org/10.3748/wjg.v18.i30.4012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nobaek S, Johansson ML, Molin G, Ahrne S, Jeppsson B. Alteration of intestinal microflora is associated with reduction in abdominal bloating and pain in patients with irritable bowel syndrome. Am J Gastroenterol. 2000;95(5):1231–8. https://doi.org/10.1111/j.1572-0241.2000.02015.x.

    Article  CAS  PubMed  Google Scholar 

  26. Sinn DH, Song JH, Kim HJ, Lee JH, Son HJ, Chang DK, et al. Therapeutic effect of Lactobacillus acidophilus-SDC 2012, 2013 in patients with irritable bowel syndrome. Dig Dis Sci. 2008;53(10):2714–8. https://doi.org/10.1007/s10620-007-0196-4.

    Article  PubMed  Google Scholar 

  27. Niv E, Naftali T, Hallak R, et al. The efficacy of Lactobacillus reuteri ATCC 55730 in the treatment of patients with irritable bowel syndrome—a double blind, placebo-controlled, randomized study. Clin Nutr. 2005;24(6):925–31. https://doi.org/10.1016/j.clnu.2005.06.001.

    Article  PubMed  Google Scholar 

  28. Gawronska A, Dziechciarz P, Horvath A, et al. A randomized double-blind placebo-controlled trial of Lactobacillus GG for abdominal pain disorders in children. Aliment Pharmacol Ther. 2007;25(2):177–84. https://doi.org/10.1111/j.1365-2036.2006.03175.x.

    Article  CAS  PubMed  Google Scholar 

  29. Francavilla R, Miniello V, Magista AM, de Canio A, Bucci N, Gagliardi F, et al. A randomized controlled trial of Lactobacillus GG in children with functional abdominal pain. Pediatrics. 2010;126(6):e1445–52. https://doi.org/10.1542/peds.2010-0467.

    Article  PubMed  Google Scholar 

  30. Bauserman M, Michail S. The use of Lactobacillus GG in irritable bowel syndrome in children: a double-blind randomized control trial. J Pediatr. 2005;147(2):197–201. https://doi.org/10.1016/j.jpeds.2005.05.015.

    Article  PubMed  Google Scholar 

  31. Enck P, Zimmermann K, Menke G, Klosterhalfen S. Randomized controlled treatment trial of irritable bowel syndrome with a probiotic E.-coli preparation (DSM17252) compared to placebo. Z Gastroenterol. 2014;52(1):64. https://doi.org/10.1055/s-0034-1366796.

    Article  CAS  PubMed  Google Scholar 

  32. Kajander K, Hatakka K, Poussa T, et al. A probiotic mixture alleviates symptoms in irritable bowel syndrome patients: a controlled 6-month intervention. Aliment Pharmacol Ther. 2005;22(5):387–94. https://doi.org/10.1111/j.1365-2036.2005.02579.x.

    Article  CAS  PubMed  Google Scholar 

  33. Kajander K, Myllyluoma E, Rajilic-Stojanovic M, et al. Clinical trial: multispecies probiotic supplementation alleviates the symptoms of irritable bowel syndrome and stabilizes intestinal microbiota. Aliment Pharmacol Ther. 2008;27(1):48–57. https://doi.org/10.1111/j.1365-2036.2007.03542.x.

    Article  CAS  PubMed  Google Scholar 

  34. Ki Cha B, Mun Jung S, Hwan Choi C, Song ID, Woong Lee H, Joon Kim H, et al. The effect of a multispecies probiotic mixture on the symptoms and fecal microbiota in diarrhea-dominant irritable bowel syndrome: a randomized, double-blind, placebo-controlled trial. J Clin Gastroenterol. 2012;46(3):220–7. https://doi.org/10.1097/MCG.0b013e31823712b1.

    Article  PubMed  Google Scholar 

  35. Michail S, Kenche H. Gut microbiota is not modified by randomized, double-blind, placebo-controlled trial of VSL#3 in diarrhea-predominant irritable bowel syndrome. Probiotics Antimicrob Proteins. 2011;3(1):1–7. https://doi.org/10.1007/s12602-010-9059-y.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kim HJ, Camilleri M, McKinzie S, et al. A randomized controlled trial of a probiotic, VSL#3, on gut transit and symptoms in diarrhoea-predominant irritable bowel syndrome. Aliment Pharmacol Ther. 2003;17(7):895–904. https://doi.org/10.1046/j.1365-2036.2003.01543.x.

    Article  CAS  PubMed  Google Scholar 

  37. Kim HJ, Vazquez Roque MI, Camilleri M, et al. A randomized controlled trial of a probiotic combination VSL# 3 and placebo in irritable bowel syndrome with bloating. Neurogastroenterol Motility. 2005;17(5):687–96. https://doi.org/10.1111/j.1365-2982.2005.00695.x.

    Article  CAS  Google Scholar 

  38. Kim SE, Choi SC, Park KS, Park MI, Shin JE, Lee TH, et al. Change of fecal flora and effectiveness of the short-term VSL#3 probiotic treatment in patients with functional constipation. J Neurogastroenterol Motil. 2015;21(1):111–20. https://doi.org/10.5056/jnm14048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guandalini S, Magazzu G, Chiaro A, et al. VSL#3 improves symptoms in children with irritable bowel syndrome: a multicenter, randomized, placebo-controlled, double-blind, crossover study. J Pediatr Gastroenterol Nutr. 2010;51(1):24–30. https://doi.org/10.1097/MPG.0b013e3181ca4d95.

    Article  PubMed  Google Scholar 

  40. Paineau D, Payen F, Panserieu S, Coulombier G, Sobaszek A, Lartigau I, et al. The effects of regular consumption of short-chain fructo-oligosaccharides on digestive comfort of subjects with minor functional bowel disorders. Br J Nutr. 2008;99(2):311–8. https://doi.org/10.1017/S000711450779894X.

    Article  CAS  PubMed  Google Scholar 

  41. Silk DB, Davis A, Vulevic J, et al. Clinical trial: the effects of a trans-galactooligosaccharide prebiotic on faecal microbiota and symptoms in irritable bowel syndrome. Aliment Pharmacol Ther. 2009;29(5):508–18. https://doi.org/10.1111/j.1365-2036.2008.03911.x.

    Article  CAS  PubMed  Google Scholar 

  42. Segal HE, Gresso WE, Thiemanun W. Longitudinal malaria studies in rural Northeast Thailand. Chloroquine treatment of falciparum malaria infections. Trop Geogr Med. 1975;27(2):160–4.

    CAS  PubMed  Google Scholar 

  43. Olesen M, Gudmand-Hoyer E. Efficacy, safety, and tolerability of fructooligosaccharides in the treatment of irritable bowel syndrome. Am J Clin Nutr. 2000;72(6):1570–5.

    Article  CAS  PubMed  Google Scholar 

  44. Steenbergen L, Sellaro R, van Hemert S, Bosch JA, Colzato LS. A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav Immun. 2015;48:258–64. https://doi.org/10.1016/j.bbi.2015.04.003.

    Article  PubMed  Google Scholar 

  45. Messaoudi M, Violle N, Bisson JF, Desor D, Javelot H, Rougeot C. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes. 2011;2(4):256–61. https://doi.org/10.4161/gmic.2.4.16108.

    Article  PubMed  Google Scholar 

  46. Schmidt K, Cowen PJ, Harmer CJ, Tzortzis G, Errington S, Burnet PWJ. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology. 2015;232(10):1793–801. https://doi.org/10.1007/s00213-014-3810-0.

    Article  CAS  PubMed  Google Scholar 

  47. Tillisch K, Labus J, Kilpatrick L, Jiang Z, Stains J, Ebrat B, et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology. 2013;144(7):1394–401, 401 e1–4. https://doi.org/10.1053/j.gastro.2013.02.043.

    Article  CAS  PubMed  Google Scholar 

  48. •• Takada M, Nishida K, Kataoka-Kato A, Gondo Y, Ishikawa H, Suda K, et al. Probiotic Lactobacillus casei strain Shirota relieves stress-associated symptoms by modulating the gut-brain interaction in human and animal models. Neurogastroenterol Motil. 2016;28(7):1027–36. https://doi.org/10.1111/nmo.12804. This study shows that probiotics play a pivotal role in the regulation of the stress response both in rats and humans.

    Article  CAS  PubMed  Google Scholar 

  49. Akkasheh G, Kashani-Poor Z, Tajabadi-Ebrahimi M, Jafari P, Akbari H, Taghizadeh M, et al. Clinical and metabolic response to probiotic administration in patients with major depressive disorder: a randomized, double-blind, placebo-controlled trial. Nutrition. 2016;32(3):315–20. https://doi.org/10.1016/j.nut.2015.09.003.

    Article  CAS  PubMed  Google Scholar 

  50. Rao AV, Bested AC, Beaulne TM, Katzman MA, Iorio C, Berardi JM, et al. A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog. 2009;1(1):6. https://doi.org/10.1186/1757-4749-1-6.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hilimire MR, DeVylder JE, Forestell CA. Fermented foods, neuroticism, and social anxiety: an interaction model. Psychiatry Res. 2015;228(2):203–8. https://doi.org/10.1016/j.psychres.2015.04.023.

    Article  PubMed  Google Scholar 

  52. Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A, et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr. 2011;105(5):755–64. https://doi.org/10.1017/S0007114510004319.

    Article  CAS  PubMed  Google Scholar 

  53. Griffith JP, Zarrouf FA. A systematic review of chronic fatigue syndrome: don’t assume it’s depression. Prim Care Companion J Clin Psychiatry. 2008;10(2):120–8. https://doi.org/10.4088/PCC.v10n0206.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108(38):16050–5. https://doi.org/10.1073/pnas.1102999108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gareau MG, Jury J, MacQueen G, Sherman PM, Perdue MH. Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut. 2007;56(11):1522–8. https://doi.org/10.1136/gut.2006.117176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ait-Belgnaoui A, Durand H, Cartier C, Chaumaz G, Eutamene H, Ferrier L, et al. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology. 2012;37(11):1885–95. https://doi.org/10.1016/j.psyneuen.2012.03.024.

    Article  CAS  PubMed  Google Scholar 

  57. Smith CJ, Emge JR, Berzins K, Lung L, Khamishon R, Shah P, et al. Probiotics normalize the gut-brain-microbiota axis in immunodeficient mice. Am J Physiol Gastrointest Liver Physiol. 2014;307(8):G793–802. https://doi.org/10.1152/ajpgi.00238.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Laval L, Martin R, Natividad JN, Chain F, Miquel S, de Maredsous CD, et al. Lactobacillus rhamnosus CNCM I-3690 and the commensal bacterium Faecalibacterium prausnitzii A2-165 exhibit similar protective effects to induced barrier hyper-permeability in mice. Gut Microbes. 2015;6(1):1–9. https://doi.org/10.4161/19490976.2014.990784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Palomar MM, Maldonado Galdeano C, Perdigon G. Influence of a probiotic lactobacillus strain on the intestinal ecosystem in a stress model mouse. Brain Behav Immun. 2014;35:77–85. https://doi.org/10.1016/j.bbi.2013.08.015.

    Article  CAS  PubMed  Google Scholar 

  60. Savignac HM, Couch Y, Stratford M, Bannerman DM, Tzortzis G, Anthony DC, et al. Prebiotic administration normalizes lipopolysaccharide (LPS)-induced anxiety and cortical 5-HT2A receptor and IL1-beta levels in male mice. Brain Behav Immun. 2016;52:120–31. https://doi.org/10.1016/j.bbi.2015.10.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Burokas A, Arboleya S, Moloney RD, Peterson VL, Murphy K, Clarke G, et al. Targeting the microbiota-gut-brain axis: prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol Psychiatry. 2017;82(7):472–87. https://doi.org/10.1016/j.biopsych.2016.12.031.

    Article  CAS  PubMed  Google Scholar 

  62. Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan JF, Dinan TG. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience. 2010;170(4):1179–88. https://doi.org/10.1016/j.neuroscience.2010.08.005.

    Article  CAS  PubMed  Google Scholar 

  63. Rousseaux C, Thuru X, Gelot A, Barnich N, Neut C, Dubuquoy L, et al. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat Med. 2007;13(1):35–7. https://doi.org/10.1038/nm1521.

    Article  CAS  PubMed  Google Scholar 

  64. Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X, et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motility. 2011;23(12):1132–9. https://doi.org/10.1111/j.1365-2982.2011.01796.x.

    Article  CAS  Google Scholar 

  65. Lyte M. Microbial endocrinology and the microbiota-gut-brain axis. Adv Exp Med Biol. 2014;817:3–24. https://doi.org/10.1007/978-1-4939-0897-4_1.

    Article  CAS  PubMed  Google Scholar 

  66. Levenson JM, O’Riordan KJ, Brown KD, Trinh MA, Molfese DL, Sweatt JD. Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem. 2004;279(39):40545–59. https://doi.org/10.1074/jbc.M402229200.

    Article  CAS  PubMed  Google Scholar 

  67. Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, Zucker B, et al. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci. 2003;23(28):9418–27.

    CAS  PubMed  Google Scholar 

  68. Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S, et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci U S A. 2011;108(19):8030–5. https://doi.org/10.1073/pnas.1016088108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ferrario C, Taverniti V, Milani C, Fiore W, Laureati M, de Noni I, et al. Modulation of fecal Clostridiales bacteria and butyrate by probiotic intervention with Lactobacillus paracasei DG varies among healthy adults. J Nutr. 2014;144(11):1787–96. https://doi.org/10.3945/jn.114.197723.

    Article  CAS  PubMed  Google Scholar 

  70. Kato K, Mizuno S, Umesaki Y, Ishii Y, Sugitani M, Imaoka A, et al. Randomized placebo-controlled trial assessing the effect of bifidobacteria-fermented milk on active ulcerative colitis. Aliment Pharmacol Ther. 2004;20(10):1133–41. https://doi.org/10.1111/j.1365-2036.2004.02268.x.

    Article  CAS  PubMed  Google Scholar 

  71. Distrutti E, Monaldi L, Ricci P, Fiorucci S. Gut microbiota role in irritable bowel syndrome: new therapeutic strategies. World J Gastroenterol. 2016;22(7):2219–41. https://doi.org/10.3748/wjg.v22.i7.2219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH 1R01AT009365-01 (MGG), 5R21MH108154-01 (MGG).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matteo M. Pusceddu or Melanie G. Gareau.

Ethics declarations

Conflict of Interest

Matteo Pusceddu, Kaitlin Murray, and Melanie Gareau declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Microbiome and Tissue Homeostasis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pusceddu, M.M., Murray, K. & Gareau, M.G. Targeting the Microbiota, From Irritable Bowel Syndrome to Mood Disorders: Focus on Probiotics and Prebiotics. Curr Pathobiol Rep 6, 1–13 (2018). https://doi.org/10.1007/s40139-018-0160-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-018-0160-3

Keywords

Navigation