Current Pathobiology Reports

, Volume 6, Issue 1, pp 79–96 | Cite as

Epigenetic Regulation of Myofibroblast Phenotypes in Fibrosis

Activated Myofibroblasts and Fibrosis in Various Organs (T Kisseleva and Y Liu, Section Editors)
  • 30 Downloads
Part of the following topical collections:
  1. Topical Collection on Activated Myofibroblasts and Fibrosis in Various Organs

Abstract

Purpose of Review

Myofibroblasts are the fundamental drivers of fibrosing disorders; there is great value in better defining epigenetic networks involved in myofibroblast behavior. Complex epigenetic paradigms, which are likely organ and/or disease specific, direct pathologic myofibroblast phenotypes. In this review, we highlight epigenetic regulators and the mechanisms through which they shape myofibroblast phenotype in fibrotic diseases of different organs.

Recent Findings

Hundreds of genes and their expression contribute to the myofibroblast transcriptional regime influencing myofibroblast phenotype. An increasingly large number of epigenetic modifications have been identified in the regulation of these signaling pathways driving myofibroblast activation and disease progression. Drugs that inhibit or reverse profibrotic epigenetic modifications have shown promise in vitro and in vivo; however, no current epigenetic therapies have been approved to treat fibrosis. Newly described epigenetic mechanisms will be mentioned, along with potential therapeutic targets and innovative strategies to further understand myofibroblast-directed fibrosis.

Summary

Epigenetic regulators that direct myofibroblast behavior and differentiation into pathologic myofibroblast phenotypes in fibrotic disorders comprise both overlapping and organ-specific epigenetic mechanisms.

Keywords

Myofibroblast Epigenetic Fibroblast Fibrosis 

Notes

Compliance with Ethical Standards

Conflict of Interest

Dr. Hagood reports personal fees from Kyowa Hakko Kirin, Co., Ltd., outside the submitted work.

Thu Elizabeth Duong declares no conflicts of interest.

Thu Duong and James Hagood declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    • El Taghdouini A, van Grunsven LA. Epigenetic regulation of hepatic stellate cell activation and liver fibrosis. Expert Rev Gastroenterol Hepatol. 2016;10(12):1397–408.  https://doi.org/10.1080/17474124.2016.1251309. Review of epigenetic regulation of HSC activation in liver fibrosis. PubMedCrossRefGoogle Scholar
  2. 2.
    Shiga K, Hara M, Nagasaki T, Sato T, Takahashi H, Takeyama H. Cancer-associated fibroblasts: their characteristics and their roles in tumor growth. Cancers. 2015;7(4):2443–58.  https://doi.org/10.3390/cancers7040902.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    • Hinz B. Myofibroblasts. Exp Eye Res. 2016;142:56–70.  https://doi.org/10.1016/j.exer.2015.07.009. Comprehensive review of current state of myofibroblast literature with an emphasis on myofibroblast involvement in ocular fibrosis. PubMedCrossRefGoogle Scholar
  4. 4.
    Mann J, Chu DC, Maxwell A, Oakley F, Zhu NL, Tsukamoto H, et al. MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. Gastroenterology. 2010;138(2):705–714, 14.e1-4.  https://doi.org/10.1053/j.gastro.2009.10.002.PubMedCrossRefGoogle Scholar
  5. 5.
    Kohli RM, Zhang Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature. 2013;502(7472):472–9.  https://doi.org/10.1038/nature12750.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Jang HS, Shin WJ, Lee JE, Do JT. CpG and non-CpG methylation in epigenetic gene regulation and brain function. Genes. 2017;8(6).  https://doi.org/10.3390/genes8060148.
  7. 7.
    Ghosh AK, Bhattacharyya S, Lafyatis R, Farina G, Yu J, Thimmapaya B, et al. p300 is elevated in systemic sclerosis and its expression is positively regulated by TGF-beta: epigenetic feed-forward amplification of fibrosis. J Invest Dermatol. 2013;133(5):1302–10.  https://doi.org/10.1038/jid.2012.479.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Tang X, Peng R, Ren Y, Apparsundaram S, Deguzman J, Bauer CM, et al. BET bromodomain proteins mediate downstream signaling events following growth factor stimulation in human lung fibroblasts and are involved in bleomycin-induced pulmonary fibrosis. Mol Pharmacol. 2013;83(1):283–93.  https://doi.org/10.1124/mol.112.081661.PubMedCrossRefGoogle Scholar
  9. 9.
    Glenisson W, Castronovo V, Waltregny D. Histone deacetylase 4 is required for TGFbeta1-induced myofibroblastic differentiation. Biochim Biophys Acta. 2007;1773(10):1572–82.  https://doi.org/10.1016/j.bbamcr.2007.05.016.PubMedCrossRefGoogle Scholar
  10. 10.
    Coward WR, Watts K, Feghali-Bostwick CA, Knox A, Pang L. Defective histone acetylation is responsible for the diminished expression of cyclooxygenase 2 in idiopathic pulmonary fibrosis. Mol Cell Biol. 2009;29(15):4325–39.  https://doi.org/10.1128/mcb.01776-08.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Wang Y, Fan PS, Kahaleh B. Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts. Arthritis Rheum. 2006;54(7):2271–9.  https://doi.org/10.1002/art.21948.PubMedCrossRefGoogle Scholar
  12. 12.
    Noda S, Asano Y, Nishimura S, Taniguchi T, Fujiu K, Manabe I, et al. Simultaneous downregulation of KLF5 and Fli1 is a key feature underlying systemic sclerosis. Nat Commun. 2014;5:5797.  https://doi.org/10.1038/ncomms6797.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Coward WR, Watts K, Feghali-Bostwick CA, Jenkins G, Pang L. Repression of IP-10 by interactions between histone deacetylation and hypermethylation in idiopathic pulmonary fibrosis. Mol Cell Biol. 2010;30(12):2874–86.  https://doi.org/10.1128/mcb.01527-09.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Jiang Y, Wang S, Zhao Y, Lin C, Zhong F, Jin L, et al. Histone H3K9 demethylase JMJD1A modulates hepatic stellate cells activation and liver fibrosis by epigenetically regulating peroxisome proliferator-activated receptor gamma. FASEB J. 2015;29(5):1830–41.  https://doi.org/10.1096/fj.14-251751.PubMedCrossRefGoogle Scholar
  15. 15.
    Bergmann C, Brandt A, Dees C, Zhang Y, Lin NY, Chen C et al. Jumonji domain containing protein 3 (JMJD3) as a novel epigenetic mechanism of fibroblast activation by regulation of Fra-2 [abstract]. American College of Rhuematology Annual Meeting; November 14, 20162016.Google Scholar
  16. 16.
    Coward WR, Feghali-Bostwick CA, Jenkins G, Knox AJ, Pang L. A central role for G9a and EZH2 in the epigenetic silencing of cyclooxygenase-2 in idiopathic pulmonary fibrosis. FASEB J. 2014;28(7):3183–96.  https://doi.org/10.1096/fj.13-241760.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Beermann J, Piccoli MT, Viereck J, Thum T. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev. 2016;96(4):1297–325.  https://doi.org/10.1152/physrev.00041.2015.PubMedCrossRefGoogle Scholar
  18. 18.
    Song R, Fullerton DA, Ao L, Zhao KS, Reece TB, Cleveland JC Jr, et al. Altered microRNA expression is responsible for the pro-osteogenic phenotype of interstitial cells in calcified human aortic valves. J Am Heart Assoc. 2017;6(4):e005364.  https://doi.org/10.1161/jaha.116.005364.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A. 2008;105(35):13027–32.  https://doi.org/10.1073/pnas.0805038105.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    da Costa Martins PA, Salic K, Gladka MM, Armand AS, Leptidis S, el Azzouzi H, et al. MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling. Nat Cell Biol. 2010;12(12):1220–7.  https://doi.org/10.1038/ncb2126.PubMedCrossRefGoogle Scholar
  21. 21.
    Roderburg C, Urban GW, Bettermann K, Vucur M, Zimmermann H, Schmidt S, et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology. 2011;53(1):209–18.  https://doi.org/10.1002/hep.23922.PubMedCrossRefGoogle Scholar
  22. 22.
    Roderburg C, Luedde M, Vargas Cardenas D, Vucur M, Mollnow T, Zimmermann HW, et al. miR-133a mediates TGF-beta-dependent derepression of collagen synthesis in hepatic stellate cells during liver fibrosis. J Hepatol. 2013;58(4):736–42.  https://doi.org/10.1016/j.jhep.2012.11.022.PubMedCrossRefGoogle Scholar
  23. 23.
    Li ZJ, Ou-Yang PH, Han XP. Profibrotic effect of miR-33a with Akt activation in hepatic stellate cells. Cell Signal. 2014;26(1):141–8.  https://doi.org/10.1016/j.cellsig.2013.09.018.PubMedCrossRefGoogle Scholar
  24. 24.
    Yu F, Guo Y, Chen B, Dong P, Zheng J. MicroRNA-17-5p activates hepatic stellate cells through targeting of Smad7. Lab Investig. 2015;95(7):781–9.  https://doi.org/10.1038/labinvest.2015.58.PubMedCrossRefGoogle Scholar
  25. 25.
    Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med. 2010;207(8):1589–97.  https://doi.org/10.1084/jem.20100035.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Pandit KV, Corcoran D, Yousef H, Yarlagadda M, Tzouvelekis A, Gibson KF, et al. Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2010;182(2):220–9.  https://doi.org/10.1164/rccm.200911-1698OC.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Cushing L, Kuang PP, Qian J, Shao F, Wu J, Little F, et al. miR-29 is a major regulator of genes associated with pulmonary fibrosis. Am J Respir Cell Mol Biol. 2011;45(2):287–94.  https://doi.org/10.1165/rcmb.2010-0323OC.PubMedCrossRefGoogle Scholar
  28. 28.
    Xiao J, Meng XM, Huang XR, Chung AC, Feng YL, Hui DS, et al. miR-29 inhibits bleomycin-induced pulmonary fibrosis in mice. Mol Ther. 2012;20(6):1251–60.  https://doi.org/10.1038/mt.2012.36.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Dakhlallah D, Batte K, Wang Y, Cantemir-Stone CZ, Yan P, Nuovo G, et al. Epigenetic regulation of miR-17~92 contributes to the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med. 2013;187(4):397–405.  https://doi.org/10.1164/rccm.201205-0888OC.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Lino Cardenas CL, Henaoui IS, Courcot E, Roderburg C, Cauffiez C, Aubert S, et al. miR-199a-5p is upregulated during fibrogenic response to tissue injury and mediates TGFbeta-induced lung fibroblast activation by targeting caveolin-1. PLoS Genet. 2013;9(2):e1003291.  https://doi.org/10.1371/journal.pgen.1003291.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Krupa A, Jenkins R, Luo DD, Lewis A, Phillips A, Fraser D. Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J Am Soc Nephrol. 2010;21(3):438–47.  https://doi.org/10.1681/asn.2009050530.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Qin W, Chung AC, Huang XR, Meng XM, Hui DS, Yu CM, et al. TGF-beta/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J Am Soc Nephrol. 2011;22(8):1462–74.  https://doi.org/10.1681/asn.2010121308.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ramdas V, McBride M, Denby L, Baker AH. Canonical transforming growth factor-beta signaling regulates disintegrin metalloprotease expression in experimental renal fibrosis via miR-29. Am J Pathol. 2013;183(6):1885–96.  https://doi.org/10.1016/j.ajpath.2013.08.027.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kajihara I, Jinnin M, Yamane K, Makino T, Honda N, Igata T, et al. Increased accumulation of extracellular thrombospondin-2 due to low degradation activity stimulates type I collagen expression in scleroderma fibroblasts. Am J Pathol. 2012;180(2):703–14.  https://doi.org/10.1016/j.ajpath.2011.10.030.PubMedCrossRefGoogle Scholar
  35. 35.
    Ciechomska M, O’Reilly S, Suwara M, Bogunia-Kubik K, van Laar JM. MiR-29a reduces TIMP-1 production by dermal fibroblasts via targeting TGF-beta activated kinase 1 binding protein 1, implications for systemic sclerosis. PLoS One. 2014;9(12):e115596.  https://doi.org/10.1371/journal.pone.0115596.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Maurer B, Stanczyk J, Jungel A, Akhmetshina A, Trenkmann M, Brock M, et al. MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum. 2010;62(6):1733–43.  https://doi.org/10.1002/art.27443.PubMedCrossRefGoogle Scholar
  37. 37.
    Zhu H, Li Y, Qu S, Luo H, Zhou Y, Wang Y, et al. MicroRNA expression abnormalities in limited cutaneous scleroderma and diffuse cutaneous scleroderma. J Clin Immunol. 2012;32(3):514–22.  https://doi.org/10.1007/s10875-011-9647-y.PubMedCrossRefGoogle Scholar
  38. 38.
    Nakashima T, Jinnin M, Yamane K, Honda N, Kajihara I, Makino T, et al. Impaired IL-17 signaling pathway contributes to the increased collagen expression in scleroderma fibroblasts. J Immunol. 2012;188(8):3573–83.  https://doi.org/10.4049/jimmunol.1100591.PubMedCrossRefGoogle Scholar
  39. 39.
    Honda N, Jinnin M, Kira-Etoh T, Makino K, Kajihara I, Makino T, et al. miR-150 down-regulation contributes to the constitutive type I collagen overexpression in scleroderma dermal fibroblasts via the induction of integrin beta3. Am J Pathol. 2013;182(1):206–16.  https://doi.org/10.1016/j.ajpath.2012.09.023.PubMedCrossRefGoogle Scholar
  40. 40.
    Honda N, Jinnin M, Kajihara I, Makino T, Makino K, Masuguchi S, et al. TGF-beta-mediated downregulation of microRNA-196a contributes to the constitutive upregulated type I collagen expression in scleroderma dermal fibroblasts. J Immunol. 2012;188(7):3323–31.  https://doi.org/10.4049/jimmunol.1100876.PubMedCrossRefGoogle Scholar
  41. 41.
    Li H, Yang R, Fan X, Gu T, Zhao Z, Chang D, et al. MicroRNA array analysis of microRNAs related to systemic scleroderma. Rheumatol Int. 2012;32(2):307–13.  https://doi.org/10.1007/s00296-010-1615-y.PubMedCrossRefGoogle Scholar
  42. 42.
    Yan Q, Chen J, Li W, Bao C, Fu Q. Targeting miR-155 to treat experimental scleroderma. Sci Rep. 2016;6(1):20314.  https://doi.org/10.1038/srep20314.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Christmann RB, Wooten A, Sampaio-Barros P, Borges CL, Carvalho CR, Kairalla RA, et al. miR-155 in the progression of lung fibrosis in systemic sclerosis. Arthritis Res Ther. 2016;18(1):155.  https://doi.org/10.1186/s13075-016-1054-6.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    • Bergmann C, Distler JH. Epigenetic factors as drivers of fibrosis in systemic sclerosis. Epigenomics. 2017;9(4):463–77.  https://doi.org/10.2217/epi-2016-0150. Review of epigenetic factors involved in systemic sclerosis. PubMedCrossRefGoogle Scholar
  45. 45.
    O’Reilly S, Ciechomska M, Fullard N, Przyborski S, van Laar JM. IL-13 mediates collagen deposition via STAT6 and microRNA-135b: a role for epigenetics. Sci Rep. 2016;6(1):25066.  https://doi.org/10.1038/srep25066.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Xu X, Tan X, Tampe B, Nyamsuren G, Liu X, Maier LS, et al. Epigenetic balance of aberrant Rasal1 promoter methylation and hydroxymethylation regulates cardiac fibrosis. Cardiovasc Res. 2015;105(3):279–91.  https://doi.org/10.1093/cvr/cvv015.PubMedCrossRefGoogle Scholar
  47. 47.
    Xu X, Tan X, Hulshoff MS, Wilhelmi T, Zeisberg M, Zeisberg EM. Hypoxia-induced endothelial-mesenchymal transition is associated with RASAL1 promoter hypermethylation in human coronary endothelial cells. FEBS Lett. 2016;590(8):1222–33.  https://doi.org/10.1002/1873-3468.12158.PubMedCrossRefGoogle Scholar
  48. 48.
    Watson CJ, Collier P, Tea I, Neary R, Watson JA, Robinson C, et al. Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype. Hum Mol Genet. 2014;23(8):2176–88.  https://doi.org/10.1093/hmg/ddt614.PubMedCrossRefGoogle Scholar
  49. 49.
    Tao H, Yang JJ, Chen ZW, Xu SS, Zhou X, Zhan HY, et al. DNMT3A silencing RASSF1A promotes cardiac fibrosis through upregulation of ERK1/2. Toxicology. 2014;323:42–50.  https://doi.org/10.1016/j.tox.2014.06.006.PubMedCrossRefGoogle Scholar
  50. 50.
    Olsen MB, Hildrestrand GA, Scheffler K, Vinge LE, Alfsnes K, Palibrk V, et al. NEIL3-dependent regulation of cardiac fibroblast proliferation prevents myocardial rupture. Cell Rep. 2017;18(1):82–92.  https://doi.org/10.1016/j.celrep.2016.12.009.PubMedCrossRefGoogle Scholar
  51. 51.
    Kim YS, Kang WS, Kwon JS, Hong MH, Jeong HY, Jeong HC, et al. Protective role of 5-azacytidine on myocardial infarction is associated with modulation of macrophage phenotype and inhibition of fibrosis. J Cell Mol Med. 2014;18(6):1018–27.  https://doi.org/10.1111/jcmm.12248.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Watson CJ, Horgan S, Neary R, Glezeva N, Tea I, Corrigan N, et al. Epigenetic therapy for the treatment of hypertension-induced cardiac hypertrophy and fibrosis. J Cardiovasc Pharmacol Ther. 2016;21(1):127–37.  https://doi.org/10.1177/1074248415591698.PubMedCrossRefGoogle Scholar
  53. 53.
    Tao H, Yang JJ, Hu W, Shi KH, Li J. HDAC6 promotes cardiac fibrosis progression through suppressing RASSF1A expression. Cardiology. 2016;133(1):18–26.  https://doi.org/10.1159/000438781.PubMedCrossRefGoogle Scholar
  54. 54.
    Williams SM, Golden-Mason L, Ferguson BS, Douglas KB, Cavasin MA, Demos-Davies K, et al. Class I HDACs regulate angiotensin II-dependent cardiac fibrosis via fibroblasts and circulating fibrocytes. J Mol Cell Cardiol. 2013;67:112–25.  https://doi.org/10.1016/j.yjmcc.2013.12.013.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Nural-Guvener HF, Zakharova L, Nimlos J, Popovic S, Mastroeni D, Gaballa MA. HDAC class I inhibitor. Fibrogenesis Tissue Repair. 2014;7(1):10.  https://doi.org/10.1186/1755-1536-7-10.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Kao YH, Liou JP, Chung CC, Lien GS, Kuo CC, Chen SA, et al. Histone deacetylase inhibition improved cardiac functions with direct antifibrotic activity in heart failure. Int J Cardiol. 2013;168  https://doi.org/10.1016/j.ijcard.2013.07.111.
  57. 57.
    Liu F, Levin MD, Petrenko NB, Lu MM, Wang T, Yuan LJ, et al. Histone-deacetylase inhibition reverses atrial arrhythmia inducibility and fibrosis in cardiac hypertrophy independent of angiotensin. J Mol Cell Cardiol. 2008;45  https://doi.org/10.1016/j.yjmcc.2008.08.015.
  58. 58.
    Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456(7224):980–4.  https://doi.org/10.1038/nature07511.PubMedCrossRefGoogle Scholar
  59. 59.
    Wang YS, Li SH, Guo J, Mihic A, Wu J, Sun L, et al. Role of miR-145 in cardiac myofibroblast differentiation. J Mol Cell Cardiol. 2014;66:94–105.  https://doi.org/10.1016/j.yjmcc.2013.08.007.PubMedCrossRefGoogle Scholar
  60. 60.
    Renaud L, Harris LG, Mani SK, Kasiganesan H, Chou JC, Baicu CF, et al. HDACs regulate miR-133a expression in pressure overload-induced cardiac fibrosis. Circ Heart Fail. 2015;8(6):1094–104.  https://doi.org/10.1161/circheartfailure.114.001781.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Wu Y, Bu F, Yu H, Li W, Huang C, Meng X, et al. Methylation of Septin9 mediated by DNMT3a enhances hepatic stellate cells activation and liver fibrogenesis. Toxicol Appl Pharmacol. 2017;315:35–49.  https://doi.org/10.1016/j.taap.2016.12.002.PubMedCrossRefGoogle Scholar
  62. 62.
    Shi C, Li G, Tong Y, Deng Y, Fan J. Role of CTGF gene promoter methylation in the development of hepatic fibrosis. Am J Transl Res. 2016;8(1):125–32.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Bian EB, Huang C, Wang H, Chen XX, Zhang L, Lv XW, et al. Repression of Smad7 mediated by DNMT1 determines hepatic stellate cell activation and liver fibrosis in rats. Toxicol Lett. 2014;224(2):175–85.  https://doi.org/10.1016/j.toxlet.2013.10.038.PubMedCrossRefGoogle Scholar
  64. 64.
    Bian E-B, Huang C, Ma T-T, Tao H, Zhang H, Cheng C, et al. DNMT1-mediated PTEN hypermethylation confers hepatic stellate cell activation and liver fibrogenesis in rats. Toxicol Appl Pharmacol. 2012;264(1):13–22.  https://doi.org/10.1016/j.taap.2012.06.022.PubMedCrossRefGoogle Scholar
  65. 65.
    Yang JJ, Tao H, Huang C, Shi KH, Ma TT, Bian EB, et al. DNA methylation and MeCP2 regulation of PTCH1 expression during rats hepatic fibrosis. Cell Signal. 2013;25(5):1202–11.  https://doi.org/10.1016/j.cellsig.2013.01.005.PubMedCrossRefGoogle Scholar
  66. 66.
    Mann J, Oakley F, Akiboye F, Elsharkawy A, Thorne AW, Mann DA. Regulation of myofibroblast transdifferentiation by DNA methylation and MeCP2: implications for wound healing and fibrogenesis. Cell Death Differ. 2007;14(2):275–85.  https://doi.org/10.1038/sj.cdd.4401979.PubMedCrossRefGoogle Scholar
  67. 67.
    Qin L, Han YP. Epigenetic repression of matrix metalloproteinases in myofibroblastic hepatic stellate cells through histone deacetylases 4: implication in tissue fibrosis. Am J Pathol. 2010;177(4):1915–28.  https://doi.org/10.2353/ajpath.2010.100011.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Pannem RR, Dorn C, Hellerbrand C, Massoumi R. Cylindromatosis gene CYLD regulates hepatocyte growth factor expression in hepatic stellate cells through interaction with histone deacetylase 7. Hepatology. 2014;60(3):1066–81.  https://doi.org/10.1002/hep.27209.PubMedCrossRefGoogle Scholar
  69. 69.
    Page A, Paoli PP, Hill SJ, Howarth R, Wu R, Kweon SM, et al. Alcohol directly stimulates epigenetic modifications in hepatic stellate cells. J Hepatol. 2015;62(2):388–97.  https://doi.org/10.1016/j.jhep.2014.09.033.PubMedCrossRefGoogle Scholar
  70. 70.
    Perugorria MJ, Wilson CL, Zeybel M, Walsh M, Amin S, Robinson S, et al. Histone methyltransferase ASH1 orchestrates fibrogenic gene transcription during myofibroblast transdifferentiation. Hepatology. 2012;56(3):1129–39.  https://doi.org/10.1002/hep.25754.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Ding N, Yu RT, Subramaniam N, Sherman MH, Wilson C, Rao R, et al. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell. 2013;153(3):601–13.  https://doi.org/10.1016/j.cell.2013.03.028.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Zeybel M, Luli S, Sabater L, Hardy T, Oakley F, Leslie J, et al. A proof-of-concept for epigenetic therapy of tissue fibrosis: inhibition of liver fibrosis progression by 3-deazaneplanocin a. Mol Ther. 2017;25(1):218–31.  https://doi.org/10.1016/j.ymthe.2016.10.004.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Kaimori A, Potter JJ, Choti M, Ding Z, Mezey E, Koteish AA. Histone deacetylase inhibition suppresses the transforming growth factor beta1-induced epithelial-to-mesenchymal transition in hepatocytes. Hepatology. 2010;52(3):1033–45.  https://doi.org/10.1002/hep.23765.PubMedCrossRefGoogle Scholar
  74. 74.
    Ding N, Hah N, Yu RT, Sherman MH, Benner C, Leblanc M, et al. BRD4 is a novel therapeutic target for liver fibrosis. Proc Natl Acad Sci U S A. 2015;112(51):15713–8.  https://doi.org/10.1073/pnas.1522163112.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Wang Y, Chen C, Deng Z, Bian E, Huang C, Lei T, et al. Repression of TSC1/TSC2 mediated by MeCP2 regulates human embryo lung fibroblast cell differentiation and proliferation. Int J Biol Macromol. 2017;96:578–88.  https://doi.org/10.1016/j.ijbiomac.2016.12.062.PubMedCrossRefGoogle Scholar
  76. 76.
    Sanders YY, Pardo A, Selman M, Nuovo GJ, TO T, Siegal GP, et al. Thy-1 promoter hypermethylation: a novel epigenetic pathogenic mechanism in pulmonary fibrosis. Am J Respir Cell Mol Biol. 2008;39(5):610–8.  https://doi.org/10.1165/rcmb.2007-0322OC.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Sanders YY, TO T, Varisco BM, Hagood JS. Epigenetic regulation of thy-1 by histone deacetylase inhibitor in rat lung fibroblasts. Am J Respir Cell Mol Biol. 2011;45(1):16–23.  https://doi.org/10.1165/rcmb.2010-0154OC.PubMedCrossRefGoogle Scholar
  78. 78.
    Guo W, Shan B, Klingsberg RC, Qin X, Lasky JA. Abrogation of TGF-beta1-induced fibroblast-myofibroblast differentiation by histone deacetylase inhibition. Am J Physiol Lung Cell Mol Physiol. 2009;297(5):L864–70.  https://doi.org/10.1152/ajplung.00128.2009.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Korfei M, Skwarna S, Henneke I, MacKenzie B, Klymenko O, Saito S, et al. Aberrant expression and activity of histone deacetylases in sporadic idiopathic pulmonary fibrosis. Thorax. 2015;70(11):1022–32.  https://doi.org/10.1136/thoraxjnl-2014-206411.PubMedCrossRefGoogle Scholar
  80. 80.
    Huang SK, Scruggs AM, Donaghy J, Horowitz JC, Zaslona Z, Przybranowski S, et al. Histone modifications are responsible for decreased Fas expression and apoptosis resistance in fibrotic lung fibroblasts. Cell Death Dis. 2013;4(5):e621.  https://doi.org/10.1038/cddis.2013.146.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Sanders YY, Hagood JS, Liu H, Zhang W, Ambalavanan N, Thannickal VJ. Histone deacetylase inhibition promotes fibroblast apoptosis and ameliorates pulmonary fibrosis in mice. Eur Respir J. 2014;43(5):1448–58.  https://doi.org/10.1183/09031936.00095113.PubMedCrossRefGoogle Scholar
  82. 82.
    Davies ER, Haitchi HM, Thatcher TH, Sime PJ, Kottmann RM, Ganesan A, et al. Spiruchostatin A inhibits proliferation and differentiation of fibroblasts from patients with pulmonary fibrosis. Am J Respir Cell Mol Biol. 2012;46(5):687–94.  https://doi.org/10.1165/rcmb.2011-0040OC.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Tang X, Peng R, Phillips JE, Deguzman J, Ren Y, Apparsundaram S, et al. Assessment of Brd4 inhibition in idiopathic pulmonary fibrosis lung fibroblasts and in vivo models of lung fibrosis. Am J Pathol. 2013;183(2):470–9.  https://doi.org/10.1016/j.ajpath.2013.04.020.PubMedCrossRefGoogle Scholar
  84. 84.
    Bechtel W, McGoohan S, Zeisberg EM, Muller GA, Kalbacher H, Salant DJ, et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med. 2010;16(5):544–50.  https://doi.org/10.1038/nm.2135.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Chang YT, Yang CC, Pan SY, Chou YH, Chang FC, Lai CF, et al. DNA methyltransferase inhibition restores erythropoietin production in fibrotic murine kidneys. J Clin Invest. 2016;126(2):721–31.  https://doi.org/10.1172/jci82819.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Pang M, Kothapally J, Mao H, Tolbert E, Ponnusamy M, Chin YE, et al. Inhibition of histone deacetylase activity attenuates renal fibroblast activation and interstitial fibrosis in obstructive nephropathy. Am J Physiol Renal Physiol. 2009;297(4):F996–f1005.  https://doi.org/10.1152/ajprenal.00282.2009.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Ponnusamy M, Zhou X, Yan Y, Tang J, Tolbert E, Zhao TC, et al. Blocking sirtuin 1 and 2 inhibits renal interstitial fibroblast activation and attenuates renal interstitial fibrosis in obstructive nephropathy. J Pharmacol Exp Ther. 2014;350(2):243–56.  https://doi.org/10.1124/jpet.113.212076.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Xu H, Wu X, Qin H, Tian W, Chen J, Sun L, et al. Myocardin-related transcription factor a epigenetically regulates renal fibrosis in diabetic nephropathy. Clin J Am Soc Nephrol. 2015;26(7):1648–60.  https://doi.org/10.1681/asn.2014070678.CrossRefGoogle Scholar
  89. 89.
    Dees C, Schlottmann I, Funke R, Distler A, Palumbo-Zerr K, Zerr P, et al. The Wnt antagonists DKK1 and SFRP1 are downregulated by promoter hypermethylation in systemic sclerosis. Ann Rheum Dis. 2014;73(6):1232–9.  https://doi.org/10.1136/annrheumdis-2012-203194.PubMedCrossRefGoogle Scholar
  90. 90.
    Svegliati S, Marrone G, Pezone A, Spadoni T, Grieco A, Moroncini G, et al. Oxidative DNA damage induces the ATM-mediated transcriptional suppression of the Wnt inhibitor WIF-1 in systemic sclerosis and fibrosis. Sci Signal. 2014;7(341):ra84.  https://doi.org/10.1126/scisignal.2004592.PubMedCrossRefGoogle Scholar
  91. 91.
    Huber LC, Distler JH, Moritz F, Hemmatazad H, Hauser T, Michel BA, et al. Trichostatin A prevents the accumulation of extracellular matrix in a mouse model of bleomycin-induced skin fibrosis. Arthritis Rheum. 2007;56(8):2755–64.  https://doi.org/10.1002/art.22759.PubMedCrossRefGoogle Scholar
  92. 92.
    Hemmatazad H, Rodrigues HM, Maurer B, Brentano F, Pileckyte M, Distler JH, et al. Histone deacetylase 7, a potential target for the antifibrotic treatment of systemic sclerosis. Arthritis Rheum. 2009;60(5):1519–29.  https://doi.org/10.1002/art.24494.PubMedCrossRefGoogle Scholar
  93. 93.
    Bhattacharyya S, Ghosh AK, Pannu J, Mori Y, Takagawa S, Chen G, et al. Fibroblast expression of the coactivator p300 governs the intensity of profibrotic response to transforming growth factor beta. Arthritis Rheum. 2005;52(4):1248–58.  https://doi.org/10.1002/art.20996.PubMedCrossRefGoogle Scholar
  94. 94.
    Zerr P, Palumbo-Zerr K, Huang J, Tomcik M, Sumova B, Distler O, et al. Sirt1 regulates canonical TGF-beta signalling to control fibroblast activation and tissue fibrosis. Ann Rheum Dis. 2016;75(1):226–33.  https://doi.org/10.1136/annrheumdis-2014-205740.PubMedCrossRefGoogle Scholar
  95. 95.
    Wei J, Ghosh AK, Chu H, Fang F, Hinchcliff ME, Wang J, et al. The histone deacetylase Sirtuin 1 is reduced in systemic sclerosis and abrogates fibrotic responses by targeting transforming growth factor beta signaling. Arthritis Rheumatol. 2015;67(5):1323–34.  https://doi.org/10.1002/art.39061.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Akamata K, Wei J, Bhattacharyya M, Cheresh P, Bonner MY, Arbiser JL, et al. SIRT3 is attenuated in systemic sclerosis skin and lungs, and its pharmacologic activation mitigates organ fibrosis. Oncotarget. 2016;7(43):69321–36.  https://doi.org/10.18632/oncotarget.12504.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Kramer M, Dees C, Huang J, Schlottmann I, Palumbo-Zerr K, Zerr P, et al. Inhibition of H3K27 histone trimethylation activates fibroblasts and induces fibrosis. Ann Rheum Dis. 2013;72(4):614–20.  https://doi.org/10.1136/annrheumdis-2012-201615.PubMedCrossRefGoogle Scholar
  98. 98.
    Ciechomska M, O’Reilly S, Przyborski S, Oakley F, Bogunia-Kubik K, van Laar JM. Histone demethylation and toll-like receptor 8-dependent cross-talk in monocytes promotes transdifferentiation of fibroblasts in systemic sclerosis via Fra-2. Arthritis Rheumatol. 2016;68(6):1493–504.  https://doi.org/10.1002/art.39602.PubMedCrossRefGoogle Scholar
  99. 99.
    Wang Z, Jinnin M, Nakamura K, Harada M, Kudo H, Nakayama W, et al. Long non-coding RNA TSIX is upregulated in scleroderma dermal fibroblasts and controls collagen mRNA stabilization. Exp Dermatol. 2016;25(2):131–6.  https://doi.org/10.1111/exd.12900.PubMedCrossRefGoogle Scholar
  100. 100.
    Riau AK, Wong TT, Lan W, Finger SN, Chaurasia SS, Hou AH, et al. Aberrant DNA methylation of matrix remodeling and cell adhesion related genes in pterygium. PLoS One. 2011;6(2):e14687.  https://doi.org/10.1371/journal.pone.0014687.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Engelsvold DH, Utheim TP, Olstad OK, Gonzalez P, Eidet JR, Lyberg T, et al. miRNA and mRNA expression profiling identifies members of the miR-200 family as potential regulators of epithelial-mesenchymal transition in pterygium. Exp Eye Res. 2013;115:189–98.  https://doi.org/10.1016/j.exer.2013.07.003.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Tao H, Yang JJ, Shi KH, Deng ZY, Li J. DNA methylation in cardiac fibrosis: new advances and perspectives. Toxicology. 2014;323:125–9.  https://doi.org/10.1016/j.tox.2014.07.002.PubMedCrossRefGoogle Scholar
  103. 103.
    Nural-Guvener H, Zakharova L, Feehery L, Sljukic S, Gaballa M. Anti-fibrotic effects of class I HDAC inhibitor, mocetinostat is associated with IL-6/Stat3 signaling in ischemic heart failure. Int J Mol Sci. 2015;16(5):11482–99.  https://doi.org/10.3390/ijms160511482.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    • Grimaldi V, De Pascale MR, Zullo A, Soricelli A, Infante T, Mancini FP, et al. Evidence of epigenetic tags in cardiac fibrosis. J Cardiol. 2017;69(2):401–8.  https://doi.org/10.1016/j.jjcc.2016.10.004. A review of epigenetic changes involved in cardiac fibrosis. PubMedCrossRefGoogle Scholar
  105. 105.
    Stratton MS, McKinsey TA. Epigenetic regulation of cardiac fibrosis. J Mol Cell Cardiol. 2016;92:206–13.  https://doi.org/10.1016/j.yjmcc.2016.02.011.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Liu AC, Joag VR, Gotlieb AI. The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. Am J Pathol. 2007;171(5):1407–18.  https://doi.org/10.2353/ajpath.2007.070251.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Karin D, Koyama Y, Brenner D, Kisseleva T. The characteristics of activated portal fibroblasts/myofibroblasts in liver fibrosis. Differentiation. 2016;92(3):84–92.  https://doi.org/10.1016/j.diff.2016.07.001.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Nwosu ZC, Alborzinia H, Wolfl S, Dooley S, Liu Y. Evolving insights on metabolism, autophagy, and epigenetics in liver myofibroblasts. Front Physiol. 2016;7:191.  https://doi.org/10.3389/fphys.2016.00191.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    • Tzouvelekis A, Kaminski N. Epigenetics in idiopathic pulmonary fibrosis. Biochem Cell Biol. 2015;93(2):159–70.  https://doi.org/10.1139/bcb-2014-0126. Review of epigenetic mechanisms involved in IPF. PubMedCrossRefGoogle Scholar
  110. 110.
    Pandit KV, Milosevic J, Kaminski N. MicroRNAs in idiopathic pulmonary fibrosis. Transl Res. 2011;157(4):191–9.  https://doi.org/10.1016/j.trsl.2011.01.012.PubMedCrossRefGoogle Scholar
  111. 111.
    Sanders YY, Ambalavanan N, Halloran B, Zhang X, Liu H, Crossman DK, et al. Altered DNA methylation profile in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2012;186(6):525–35.  https://doi.org/10.1164/rccm.201201-0077OC.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Tampe D, Zeisberg M. A primer on the epigenetics of kidney fibrosis. Minerva Med. 2012;103(4):267–78.PubMedGoogle Scholar
  113. 113.
    Kim KW, Park SH, Kim JC. Fibroblast biology in pterygia. Exp Eye Res. 2016;142:32–9.  https://doi.org/10.1016/j.exer.2015.01.010.PubMedCrossRefGoogle Scholar
  114. 114.
    Page A, Paoli P, Moran Salvador E, White S, French J, Mann J. Hepatic stellate cell transdifferentiation involves genome-wide remodeling of the DNA methylation landscape. J Hepatol. 2016;64(3):661–73.  https://doi.org/10.1016/j.jhep.2015.11.024.PubMedCrossRefGoogle Scholar
  115. 115.
    Niki T, Rombouts K, De Bleser P, De Smet K, Rogiers V, Schuppan D, et al. A histone deacetylase inhibitor, trichostatin A, suppresses myofibroblastic differentiation of rat hepatic stellate cells in primary culture. Hepatology. 1999;29(3):858–67.  https://doi.org/10.1002/hep.510290328.PubMedCrossRefGoogle Scholar
  116. 116.
    Park KC, Park JH, Jeon JY, Kim SY, Kim JM, Lim CY, et al. A new histone deacetylase inhibitor improves liver fibrosis in BDL rats through suppression of hepatic stellate cells. Br J Pharmacol. 2014;171(21):4820–30.  https://doi.org/10.1111/bph.12590.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Liu Y, Wang Z, Wang J, Lam W, Kwong S, Li F, et al. A histone deacetylase inhibitor, largazole, decreases liver fibrosis and angiogenesis by inhibiting transforming growth factor-β and vascular endothelial growth factor signalling. Liver Int. 2013;33(4):504–15.  https://doi.org/10.1111/liv.12034.PubMedCrossRefGoogle Scholar
  118. 118.
    Mannaerts I, Nuytten NR, Rogiers V, Vanderkerken K, van Grunsven LA, Geerts A. Chronic administration of valproic acid inhibits activation of mouse hepatic stellate cells in vitro and in vivo. Hepatology. 2010;51(2):603–14.  https://doi.org/10.1002/hep.23334.PubMedCrossRefGoogle Scholar
  119. 119.
    Hardy T, Zeybel M, Day CP, Dipper C, Masson S, McPherson S, et al. Plasma DNA methylation: a potential biomarker for stratification of liver fibrosis in non-alcoholic fatty liver disease. Gut. 2017;66(7):1321–8.  https://doi.org/10.1136/gutjnl-2016-311526.PubMedCrossRefGoogle Scholar
  120. 120.
    Bowman SK. Discovering enhancers by mapping chromatin features in primary tissue. Genomics. 2015;106(3):140–4.  https://doi.org/10.1016/j.ygeno.2015.06.006.PubMedCrossRefGoogle Scholar
  121. 121.
    Clark SJ, Lee HJ, Smallwood SA, Kelsey G, Reik W. Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity. Genome Biol. 2016;17(1):72.  https://doi.org/10.1186/s13059-016-0944-x.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Lang AH, Li H, Collins JJ, Mehta P. Epigenetic landscapes explain partially reprogrammed cells and identify key reprogramming genes. PLoS Comput Biol. 2014;10(8):e1003734.  https://doi.org/10.1371/journal.pcbi.1003734.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Glass CK, Natoli G. Molecular control of activation and priming in macrophages. Nat Immunol. 2016;17(1):26–33.  https://doi.org/10.1038/ni.3306.PubMedCrossRefGoogle Scholar
  124. 124.
    Dahl KN, Ribeiro AJ, Lammerding J. Nuclear shape, mechanics, and mechanotransduction. Circ Res. 2008;102(11):1307–18.  https://doi.org/10.1161/circresaha.108.173989.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Xu X, Tao Y, Gao X, Zhang L, Li X, Zou W, et al. A CRISPR-based approach for targeted DNA demethylation. Cell discovery. 2016;2:16009.  https://doi.org/10.1038/celldisc.2016.9.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Parrilla-Doblas JT, Ariza RR, Roldan-Arjona T. Targeted DNA demethylation in human cells by fusion of a plant 5-methylcytosine DNA glycosylase to a sequence-specific DNA binding domain. Epigenetics. 2017;12(4):296–303.  https://doi.org/10.1080/15592294.2017.1294306.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Pediatric Respiratory MedicineUniversity of California–San DiegoLa JollaUSA
  2. 2.Division of Respiratory MedicineRady Children’s Hospital of San DiegoSan DiegoUSA

Personalised recommendations