Advances in Autologous Breast Reconstruction


Autologous breast reconstruction (ABR) in patients undergoing mastectomy is now routinely performed, and associated with high rates of success and minimal donor site morbidity. Compared to alloplastic techniques, advantages of autologous approaches include the ability to confer a lifelong result without the need for additional surgery, superiority in the setting of radiation therapy, and eliminating the possibility of implant-related complications such as anaplastic large cell lymphoma. Moreover, ABR is associated with superior patient-reported outcomes compared to implant-based reconstruction. This article reviews recent advances in ABR, which have refined existing techniques, broadened the array of donor site options available to reconstructive surgeons, and streamlined the management of patients undergoing these procedures.

This is a preview of subscription content, access via your institution.


Recently published papers of particular interest have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Institute, N.C. National Cancer Institute: Common Cancer Types. [cited 2020 June 15]; Available from:

  2. 2.

    Kummerow KL, et al. Nationwide trends in mastectomy for early-stage breast cancer. JAMA Surg. 2015;150(1):9–16.

    PubMed  Google Scholar 

  3. 3.

    Kurian AW, et al. Use of and mortality after bilateral mastectomy compared with other surgical treatments for breast cancer in California, 1998–2011. JAMA. 2014;312(9):902–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Eltahir Y, et al. Quality-of-life outcomes between mastectomy alone and breast reconstruction: comparison of patient-reported BREAST-Q and other health-related quality-of-life measures. Plast Reconstr Surg. 2013;132(2):201e–9e.

    CAS  PubMed  Google Scholar 

  5. 5.

    Devulapalli C, et al. The effect of radiation on quality of life throughout the breast reconstruction process: a prospective, longitudinal pilot study of 200 patients with long-term follow-up. Plast Reconstr Surg. 2018;141(3):579–89.

    CAS  PubMed  Google Scholar 

  6. 6.

    Eltahir Y, et al. Outcome of Quality of Life for Women Undergoing Autologous versus Alloplastic Breast Reconstruction following Mastectomy: A Systematic Review and Meta-Analysis. Plast Reconstr Surg. 2020;145(5):1109–23.

    CAS  PubMed  Google Scholar 

  7. 7.

    Allen RJ, Treece P. Deep inferior epigastric perforator flap for breast reconstruction. Ann Plast Surg. 1994;32(1):32–8.

    CAS  PubMed  Google Scholar 

  8. 8.

    Pien I, et al. Evolving Trends in Autologous Breast Reconstruction: Is the Deep Inferior Epigastric Artery Perforator Flap Taking Over? Ann Plast Surg. 2016;76(5):489–93.

    CAS  PubMed  Google Scholar 

  9. 9.

    DellaCroce FJ, et al. Myth-busting the DIEP flap and an introduction to the abdominal perforator exchange (APEX) breast reconstruction technique: a single-surgeon retrospective review. Plast Reconstr Surg. 2019;143(4):992–1008.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Andejani DF, AlThubaiti GA. Intersection-splitting Deep Inferior Epigastric Perforator Flap. Plast Reconstr Surg Glob Open. 2019;7(10):e2490.

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Temple CL, et al. Sensibility following innervated free TRAM flap for breast reconstruction: Part II. Innervation improves patient-rated quality of life. Plast Reconstr Surg. 2009;124(5):1419–25.

    CAS  PubMed  Google Scholar 

  12. 12.

    Blondeel PN, et al. Sensory nerve repair in perforator flaps for autologous breast reconstruction: sensational or senseless? Br J Plast Surg. 1999;52(1):37–44.

    CAS  PubMed  Google Scholar 

  13. 13.

    Sarhadi NS, et al. An anatomical study of the nerve supply of the breast, including the nipple and areola. Br J Plast Surg. 1996;49(3):156–64.

    CAS  PubMed  Google Scholar 

  14. 14.

    Schlenz I, et al. The sensitivity of the nipple-areola complex: an anatomic study. Plast Reconstr Surg. 2000;105(3):905–9.

    CAS  PubMed  Google Scholar 

  15. 15.

    Spiegel AJ, et al. Breast Reinnervation: DIEP Neurotization Using the Third Anterior Intercostal Nerve. Plast Reconstr Surg Glob Open. 2013;1(8):e72.

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Safa B, Buncke G. Autograft Substitutes: Conduits and Processed Nerve Allografts. Hand Clin. 2016;32(2):127–40.

    PubMed  Google Scholar 

  17. 17.

    Ducic I, et al. Anatomical considerations to optimize sensory recovery in breast neurotization with allograft. Plast Reconstr Surg Glob Open. 2018;6(11):e1985.

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Salomon D, Miloro M, Kolokythas A. Outcomes of immediate allograft reconstruction of long-span defects of the inferior alveolar nerve. J Oral Maxillofac Surg. 2016;74(12):2507–14.

    PubMed  Google Scholar 

  19. 19.

    Zuniga JR, Williams F, Petrisor D. A case-and-control, multisite, positive controlled, prospective study of the safety and effectiveness of immediate inferior alveolar nerve processed nerve allograft reconstruction with ablation of the mandible for benign pathology. J Oral Maxillofac Surg. 2017;75(12):2669–81.

    PubMed  Google Scholar 

  20. 20.

    Means KR Jr, et al. A multicenter, prospective, randomized, pilot study of outcomes for digital nerve repair in the hand using hollow conduit compared with processed allograft nerve. Hand (N Y). 2016;11(2):144–51.

    Google Scholar 

  21. 21.

    de Weerd L, et al. Autologous breast reconstruction with a free lumbar artery perforator flap. Br J Plast Surg. 2003;56(2):180–3.

    PubMed  Google Scholar 

  22. 22.

    Opsomer D, et al. The lumbar artery perforator flap in autologous breast reconstruction: initial experience with 100 cases. Plast Reconstr Surg. 2018;142(1):1e–8e.

    CAS  PubMed  Google Scholar 

  23. 23.

    Hamdi M, et al. Lumbar artery perforator flap: an anatomical study using multidetector computed tomographic scan and surgical pearls for breast reconstruction. Plast Reconstr Surg. 2016;138(2):343–52.

    CAS  PubMed  Google Scholar 

  24. 24.

    Peters KT, et al. Early experience with the free lumbar artery perforator flap for breast reconstruction. J Plast Reconstr Aesthet Surg. 2015;68(8):1112–9.

    PubMed  Google Scholar 

  25. 25.

    Opsomer D, et al. Lumbar flap versus the gold standard: comparison to the DIEP flap. Plast Reconstr Surg. 2020;145(4):706e–14e.

    CAS  PubMed  Google Scholar 

  26. 26.

    Elliott LF, Beegle PH, Hartrampf CR Jr. The lateral transverse thigh free flap: an alternative for autogenous-tissue breast reconstruction. Plast Reconstr Surg. 1990;85(2):169–78.

    CAS  PubMed  Google Scholar 

  27. 27.

    Kind GM, Foster RD. Breast reconstruction using the lateral femoral circumflex artery perforator flap. J Reconstr Microsurg. 2011;27(7):427–32.

    PubMed  Google Scholar 

  28. 28.

    Vegas MR, Martin-Hervas C. The superolateral thigh flap: cadaver and computed tomographic angiography studies with a clinical series. Plast Reconstr Surg. 2013;131(2):310–22.

    CAS  PubMed  Google Scholar 

  29. 29.

    Tuinder S, et al. Septocutaneous tensor fasciae latae perforator flap for breast reconstruction: radiological considerations and clinical cases. J Plast Reconstr Aesthet Surg. 2014;67(9):1248–56.

    CAS  PubMed  Google Scholar 

  30. 30.

    Maricevich MA, et al. Lateral thigh perforator flap for breast reconstruction: Computed tomographic angiography analysis and clinical series. J Plast Reconstr Aesthet Surg. 2017;70(5):577–84.

    PubMed  Google Scholar 

  31. 31.

    Tuinder SMH, et al. The Lateral Thigh Perforator Flap for Autologous Breast Reconstruction: A Prospective Analysis of 138 Flaps. Plast Reconstr Surg. 2018;141(2):257–68.

    CAS  PubMed  Google Scholar 

  32. 32.

    Ishii CH Jr, et al. Double-pedicle transverse rectus abdominis myocutaneous flap for unilateral breast and chest-wall reconstruction. Plast Reconstr Surg. 1985;76(6):901–7.

    PubMed  Google Scholar 

  33. 33.

    Wagner DS, Michelow BJ, Hartrampf CR Jr. Double-pedicle TRAM flap for unilateral breast reconstruction. Plast Reconstr Surg. 1991;88(6):987–97.

    CAS  PubMed  Google Scholar 

  34. 34.

    Spear SL, Travaglino-Parda RL, Stefan MM. The stacked transverse rectus abdominis musculocutaneous flap revisited in breast reconstruction. Ann Plast Surg. 1994;32(6):565–71.

    CAS  PubMed  Google Scholar 

  35. 35.

    Ali RS, Garrido A, Ramakrishnan V. Stacked free hemi-DIEP flaps: a method of autologous breast reconstruction in a patient with midline abdominal scarring. Br J Plast Surg. 2002;55(4):351–3.

    CAS  PubMed  Google Scholar 

  36. 36.

    DellaCroce FJ, Sullivan SK, Trahan C. Stacked deep inferior epigastric perforator flap breast reconstruction: a review of 110 flaps in 55 cases over 3 years. Plast Reconstr Surg. 2011;127(3):1093–9.

    CAS  PubMed  Google Scholar 

  37. 37.

    Agarwal JP, Gottlieb LJ. Double pedicle deep inferior epigastric perforator/muscle-sparing TRAM flaps for unilateral breast reconstruction. Ann Plast Surg. 2007;58(4):359–63.

    CAS  PubMed  Google Scholar 

  38. 38.

    Munhoz AM, et al. Perforator flap breast reconstruction using internal mammary perforator branches as a recipient site: an anatomical and clinical analysis. Plast Reconstr Surg. 2004;114(1):62–8.

    PubMed  Google Scholar 

  39. 39.

    Kerr-Valentic MA, Gottlieb LJ, Agarwal JP. The retrograde limb of the internal mammary vein: an additional outflow option in DIEP flap breast reconstruction. Plast Reconstr Surg. 2009;124(3):717–21.

    CAS  PubMed  Google Scholar 

  40. 40.

    Mohebali J, Gottlieb LJ, Agarwal JP. Further validation for use of the retrograde limb of the internal mammary vein in deep inferior epigastric perforator flap breast reconstruction using laser-assisted indocyanine green angiography. J Reconstr Microsurg. 2010;26(2):131–5.

    PubMed  Google Scholar 

  41. 41.

    Al-Dhamin A, et al. The use of retrograde limb of internal mammary vein in autologous breast reconstruction with DIEAP flap: anatomical and clinical study. Ann Plast Surg. 2014;72(3):281–4.

    CAS  PubMed  Google Scholar 

  42. 42.

    Teotia SS, et al. Revisiting anastomosis to the retrograde internal mammary system in stacked free flap breast reconstruction: an algorithmic approach to recipient-site selection. Plast Reconstr Surg. 2020;145(4):880–7.

    CAS  PubMed  Google Scholar 

  43. 43.

    Blondeel PN, et al. Shaping the breast in aesthetic and reconstructive breast surgery: an easy three-step principle. Part IV–aesthetic breast surgery. Plast Reconstr Surg. 2009;124(2):372–82.

    CAS  PubMed  Google Scholar 

  44. 44.

    Koolen PG, et al. Bipedicle-conjoined perforator flaps in breast reconstruction. J Surg Res. 2015;197(2):256–64.

    PubMed  Google Scholar 

  45. 45.

    Rozen WM, Ashton MW, Grinsell D. The branching pattern of the deep inferior epigastric artery revisited in-vivo: a new classification based on CT angiography. Clin Anat. 2010;23(1):87–92.

    PubMed  Google Scholar 

  46. 46.

    Rozen WM, et al. The accuracy of computed tomographic angiography for mapping the perforators of the deep inferior epigastric artery: a blinded, prospective cohort study. Plast Reconstr Surg. 2008;122(4):1003–9.

    CAS  PubMed  Google Scholar 

  47. 47.

    Rozen WM, et al. The accuracy of computed tomographic angiography for mapping the perforators of the DIEA: a cadaveric study. Plast Reconstr Surg. 2008;122(2):363–9.

    CAS  PubMed  Google Scholar 

  48. 48.

    Smit JM, et al. Preoperative CT angiography reduces surgery time in perforator flap reconstruction. J Plast Reconstr Aesthet Surg. 2009;62(9):1112–7.

    PubMed  Google Scholar 

  49. 49.

    Rozen WM, et al. Does the preoperative imaging of perforators with CT angiography improve operative outcomes in breast reconstruction? Microsurgery. 2008;28(7):516–23.

    PubMed  Google Scholar 

  50. 50.

    Malhotra A, et al. CT-guided deep inferior epigastric perforator (DIEP) flap localization – better for the patient, the surgeon, and the hospital. Clin Radiol. 2013;68(2):131–8.

    CAS  PubMed  Google Scholar 

  51. 51.

    Keys KA, et al. Clinical utility of CT angiography in DIEP breast reconstruction. J Plast Reconstr Aesthet Surg. 2013;66(3):e61–5.

    PubMed  Google Scholar 

  52. 52.

    Ghattaura A, et al. One hundred cases of abdominal-based free flaps in breast reconstruction The impact of preoperative computed tomographic angiography. J Plast Reconstr Aesthet Surg. 2010;63(10):1597–601.

    CAS  PubMed  Google Scholar 

  53. 53.

    Chernyak V, et al. Breast reconstruction with deep inferior epigastric artery perforator flap: 3.0-T gadolinium-enhanced MR imaging for preoperative localization of abdominal wall perforators. Radiology. 2009;250(2):417–24.

    PubMed  Google Scholar 

  54. 54.

    Mohan AT, Saint-Cyr M. Advances in imaging technologies for planning breast reconstruction. Gland Surg. 2016;5(2):242–54.

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Pestana IA, Zenn MR. Correlation between abdominal perforator vessels identified with preoperative CT angiography and intraoperative fluorescent angiography in the microsurgical breast reconstruction patient. Ann Plast Surg. 2014;72(6):S144–9.

    CAS  PubMed  Google Scholar 

  56. 56.

    Um GT, et al. Implantable Cook-Swartz Doppler probe versus Synovis Flow Coupler for the post-operative monitoring of free flap breast reconstruction. J Plast Reconstr Aesthet Surg. 2014;67(7):960–6.

    PubMed  Google Scholar 

  57. 57.

    Kempton SJ, et al. Free flap monitoring using an implantable anastomotic venous flow coupler: Analysis of 119 consecutive abdominal-based free flaps for breast reconstruction. Microsurgery. 2015;35(5):337–44.

    PubMed  Google Scholar 

  58. 58.

    Lin SJ, et al. Tissue oximetry monitoring in microsurgical breast reconstruction decreases flap loss and improves rate of flap salvage. Plast Reconstr Surg. 2011;127(3):1080–5.

    CAS  PubMed  Google Scholar 

  59. 59.

    Ricci JA, et al. Evaluating the use of tissue oximetry to decrease intensive unit monitoring for free flap breast reconstruction. Ann Plast Surg. 2017;79(1):42–6.

    CAS  PubMed  Google Scholar 

  60. 60.

    Lindelauf, A., et al., Economic Analysis of Noninvasive Tissue Oximetry for Postoperative Monitoring of Deep Inferior Epigastric Perforator Flap Breast Reconstruction: A Review. Surg Innov, 2020: p. 1553350620942985.

  61. 61.

    Pelletier A, et al. Cost analysis of near-infrared spectroscopy tissue oximetry for monitoring autologous free tissue breast reconstruction. J Reconstr Microsurg. 2011;27(8):487–94.

    PubMed  Google Scholar 

  62. 62.

    Baltodano PA, et al. Early Discontinuation of Breast Free Flap Monitoring: A Strategy Driven by National Data. Plast Reconstr Surg. 2020;146(3):258e–64e.

    CAS  PubMed  Google Scholar 

  63. 63.

    Carruthers KH, et al. Inpatient flap monitoring after deep inferior epigastric artery perforator flap breast reconstruction: how long is long enough? J Reconstr Microsurg. 2019;35(9):682–7.

    PubMed  Google Scholar 

  64. 64.

    Fadavi D, et al. Postoperative free flap breast protocol optimizing resources and patient safety. J Reconstr Microsurg. 2020;36(5):379–85.

    PubMed  Google Scholar 

  65. 65.

    Ljungqvist O, Scott M, Fearon KC. Enhanced recovery after surgery: a review. JAMA Surg. 2017;152(3):292–8.

    PubMed  Google Scholar 

  66. 66.

    Batdorf NJ, et al. Enhanced recovery after surgery in microvascular breast reconstruction. J Plast Reconstr Aesthet Surg. 2015;68(3):395–402.

    PubMed  Google Scholar 

  67. 67.

    Kaoutzanis C, et al. Enhanced recovery pathway in microvascular autologous tissue-based breast reconstruction: should it become the standard of care? Plast Reconstr Surg. 2018;141(4):841–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Offodile AC 2nd, et al. Enhanced recovery after surgery (ERAS) pathways in breast reconstruction: systematic review and meta-analysis of the literature. Breast Cancer Res Treat. 2019;173(1):65–77.

    PubMed  Google Scholar 

  69. 69.

    Afonso A, et al. Is enhanced recovery the new standard of care in microsurgical breast reconstruction? Plast Reconstr Surg. 2017;139(5):1053–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Chen KT, et al. Timing of presentation of the first signs of vascular compromise dictates the salvage outcome of free flap transfers. Plast Reconstr Surg. 2007;120(1):187–95.

    CAS  PubMed  Google Scholar 

  71. 71.

    Rendon JL, et al. Enhanced recovery after surgery protocols decrease outpatient opioid use in patients undergoing abdominally based microsurgical breast reconstruction. Plast Reconstr Surg. 2020;145(3):645–51.

    CAS  PubMed  Google Scholar 

  72. 72.

    Temple-Oberle C, et al. Consensus review of optimal perioperative care in breast reconstruction: enhanced recovery after surgery (ERAS) society recommendations. Plast Reconstr Surg. 2017;139(5):1056e–71e.

    CAS  PubMed  Google Scholar 

  73. 73.

    Oh C, et al. Cost analysis of enhanced recovery after surgery in microvascular breast reconstruction. J Plast Reconstr Aesthet Surg. 2018;71(6):819–26.

    PubMed  Google Scholar 

  74. 74.

    Mericli, A.F., et al. (2020) Time Driven Activity Based Costing to Model Cost Utility of Enhanced Recovery after Surgery Pathways in Microvascular Breast Reconstruction. J Am Coll Surg, 230(5): 784–794e3.

  75. 75.

    Tran NV, et al. Comparison of immediate and delayed free TRAM flap breast reconstruction in patients receiving postmastectomy radiation therapy. Plast Reconstr Surg. 2001;108(1):78–82.

    CAS  PubMed  Google Scholar 

  76. 76.

    Chao AH, et al. Multivariate preoperative and intraoperative predictors of postmastectomy radiation therapy in patients for whom immediate breast reconstruction is planned. Plast Reconstr Surg. 2017;139(3):599e–605e.

    CAS  PubMed  Google Scholar 

  77. 77.

    Kelley BP, et al. A systematic review of morbidity associated with autologous breast reconstruction before and after exposure to radiotherapy: are current practices ideal? Ann Surg Oncol. 2014;21(5):1732–8.

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Billig J, et al. Should Immediate Autologous Breast Reconstruction Be Considered in Women Who Require Postmastectomy Radiation Therapy? A Prospective Analysis of Outcomes. Plast Reconstr Surg. 2017;139(6):1279–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Weir HK, et al. Heart Disease and Cancer Deaths - Trends and Projections in the United States, 1969–2020. Prev Chronic Dis. 2016;13:E157.

    PubMed  PubMed Central  Google Scholar 

  80. 80.

    Albornoz CR, et al. A paradigm shift in US Breast reconstruction increasing implant rates. Plast Reconstr Surg. 2013;131(1):15–23.

    CAS  PubMed  Google Scholar 

  81. 81.

    Garfein ES. The privilege of advocacy: legislating awareness of breast reconstruction. Plast Reconstr Surg. 2011;128(3):803–4.

    CAS  PubMed  Google Scholar 

  82. 82.

    •• Pusic AL, et al. Patient-reported outcomes 1 year after immediate breast reconstruction: results of the mastectomy reconstruction outcomes consortium study. J Clin Oncol. 2017;35(22):2499–506. This study presents the results of a multicenter study demonstrating the improvement in quality of life and patient-reported outcomes associated with autologous breast reconstruction.

  83. 83.

    Yueh JH, et al. Patient satisfaction in postmastectomy breast reconstruction: a comparative evaluation of DIEP, TRAM, latissimus flap, and implant techniques. Plast Reconstr Surg. 2010;125(6):1585–95.

    CAS  PubMed  Google Scholar 

  84. 84.

    Santosa KB, et al. Long-term Patient-Reported Outcomes in Postmastectomy Breast Reconstruction. JAMA Surg. 2018;153(10):891–9.

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    • Albornoz CR, et al. Diminishing relative contraindications for immediate breast reconstruction. Plast Reconstr Surg. 2014;134(3):363e–9e. An article discussing the decreasing contraindications for immediate breast reconstruction.

  86. 86.

    Dasari CR, et al. Rise in microsurgical free-flap breast reconstruction in academic medical practices. Ann Plast Surg. 2015;74(Suppl 1):S62–5.

    CAS  PubMed  Google Scholar 

  87. 87.

    Sando IC, et al. Comprehensive breast reconstruction in an academic surgical practice: an evaluation of the financial impact. Plast Reconstr Surg. 2014;134(6):1131–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Sheckter CC, et al. The influence of physician payments on the method of breast reconstruction: a national claims analysis. Plast Reconstr Surg. 2018;142(4):434e–42e.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Sheckter CC, et al. Trends in physician payments for breast reconstruction. Plast Reconstr Surg. 2018;141(4):493e–9e.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Jonczyk MM, et al. Surgical trends in breast cancer: a rise in novel operative treatment options over a 12 year analysis. Breast Cancer Res Treat. 2019;173(2):267–74.

    PubMed  Google Scholar 

Download references



Author information




Geoffroy C. Sisk, MD, and Albert H. Chao, MD, both contributed significantly to literature review and manuscript preparation.

Corresponding author

Correspondence to Albert H. Chao.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Plastic Surgery.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sisk, G.C., Chao, A.H. Advances in Autologous Breast Reconstruction. Curr Surg Rep 9, 2 (2021).

Download citation


  • Autologous
  • Diep flap
  • Breast reconstruction
  • Postmastectomy