Skip to main content

Advertisement

Log in

Adipose-Derived Stem Cells in Peripheral Nerve Regeneration

  • Traumatic Brain Injury Surgery (S. Timmons, Section Editor)
  • Published:
Current Surgery Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Peripheral nerve injuries are common, debilitating, and costly. The human body’s innate regenerative capacity is slow, and nerves are often misguided. The purpose of this article is to review a specific cellular, regenerative engineering technique that holds promise for the treatment of peripheral nerve injuries.

Recent Findings

Over the past several decades, research has focused on the utilization of stem cells for peripheral nerve repair. More recently, stem cells collected from adipose tissue (adipose-derived stem cells or ADSCs) have gained traction due to their relative ease of collection and differentiation potential. Both undifferentiated and Schwann cell-like differentiated ADSCs have been used to seed conduits with variable results.

Summary

Technical and ethical issues surrounding stem cells’ self-expansion potential and genetic makeup exist. Ultimately, randomized control trials and FDA approval will be required before widespread clinical translation in the US is realized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

(Reproduced with permission from Hindawi Publishing Corporation)

Fig. 2

(Reproduced with permission from Elsevier)

Fig. 3

(Reproduced with permission from The Royal Society)

Fig. 4

(Reproduced with permission from Springer)

Fig. 5

(Reproduced with permission from Springer)

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Taylor CA, et al. The incidence of peripheral nerve injury in extremity trauma. Am J Phys Med Rehabil. 2008;87(5):381–5.

    Article  PubMed  Google Scholar 

  2. Noble J, et al. Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma. 1998;45(1):116–22.

    Article  CAS  PubMed  Google Scholar 

  3. Dalamagkas K, Tsintou M, Seifalian A. Advances in peripheral nervous system regenerative therapeutic strategies: a biomaterials approach. Mater Sci Eng C. 2015;65:425–32.

    Article  Google Scholar 

  4. DiMaggio C, et al. Traumatic injury in the United States: in-patient epidemiology 2000–2011. Injury. 2016;47(7):1393–403.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Grinsell D, Keating CP. Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies. BioMed Res Int. 2014;2014:13.

    Article  Google Scholar 

  6. Conforti L, Gilley J, Coleman MP. Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat Publ Group. 2014;15(6):394–409.

    CAS  Google Scholar 

  7. Mirsky R, Lloyd AC. Schwann cells: development and role in nerve repair. Cold Spring Harbor Perspect Biol. 2016;7:1–16.

    Google Scholar 

  8. • Cattin, A-L, et al. Macrophage-induced blood vessels guide Schwann cell-mediated regeneration of peripheral nerves. Cell. 2015;162(5):1127–39.

  9. Cattin AL, Lloyd AC. The multicellular complexity of peripheral nerve regeneration. Curr Opin Neurobiol. 2016;39:38–46.

    Article  CAS  PubMed  Google Scholar 

  10. Seddon HJ. A Classification of Nerve Injuries. Br Med J. 1942;2(4260):237–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sunderland S. A classification of peripheral nerve injuries producing loss of function. Brain. 1951;74(4):491–516.

    Article  CAS  PubMed  Google Scholar 

  12. Houschyar KS, et al. The role of current techniques and concepts in peripheral nerve repair. Plast Surg Int. 2016;2016:1–8.

    Article  Google Scholar 

  13. Lundborg G. A 25-year perspective of peripheral nerve surgery: evolving neuroscientific concepts and clinical significance. J Hand Surg. 2000;25(3):391–414.

    Article  CAS  Google Scholar 

  14. Siemionow M, Bozkurt M, Zor F. Regeneration and repair of peripheral nerves with different biomaterials: review. Microsurgery. 2010;30(7):574–88.

    Article  PubMed  Google Scholar 

  15. Muheremu A, Ao Q. Past, present, and future of nerve conduits in the treatment of peripheral nerve injury. BioMed Res Int. 2015;. doi:10.1155/2015/237507.

    PubMed  PubMed Central  Google Scholar 

  16. Safa B, Buncke G. Autograft substitutes. conduits and processed nerve allografts. Hand Clin. 2016;32(2):127–40.

    Article  PubMed  Google Scholar 

  17. Kehoe S, Zhang XF, Boyd D. FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury. 2012;43(5):553–72.

    Article  CAS  PubMed  Google Scholar 

  18. Pabari A, et al. Modern surgical management of peripheral nerve gap. J Plast Reconstr Aesthet Surg. 2010;63(12):1941–8.

    Article  PubMed  Google Scholar 

  19. Wolfe SW, et al. Use of bioabsorbable nerve conduits as an adjunct to brachial plexus neurorrhaphy. J Hand Surg. 2012;37(10):1980–5.

    Article  Google Scholar 

  20. Deumens R, et al. Repairing injured peripheral nerves: bridging the gap. Prog Neurobiol. 2010;92(3):245–76.

    Article  PubMed  Google Scholar 

  21. Deal ND, Griffin JW, Hogan MV. Nerve conduits for nerve repair or reconstruction. J Am Acad Orthop Surg. 2012;20(2):63–8.

    PubMed  Google Scholar 

  22. Daly W, et al. A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. J R Soc Interface. 2012;9(67):202–21.

    Article  CAS  PubMed  Google Scholar 

  23. Hoben G, et al. Comparison of acellular nerve allograft modification with Schwann cells or VEGF. Hand. 2015;10(3):396–402.

    Article  PubMed  Google Scholar 

  24. • Zhou, L-N., et al. Co-graft of bone marrow stromal cells and Schwann cells into acellular nerve scaffold for sciatic nerve regeneration in rats. J Oral Maxillofa Surg. 2015;73(8):1651–1660.

  25. Pereira Lopes FR, et al. Bone marrow stromal cells and resorbable collagen guidance tubes enhance sciatic nerve regeneration in mice. Exp Neurol. 2006;198(2):457–68.

    Article  PubMed  Google Scholar 

  26. Dai R, et al. Adipose-derived stem cells for tissue engineering and regenerative medicine applications. Stem Cells Int. 2016;2016:6737345.

    PubMed  PubMed Central  Google Scholar 

  27. Raff M. Adult Stem Cell Plasticity: fact or Artifact? Annu Rev Cell Dev Biol. 2003;19(1):1–22.

    Article  CAS  PubMed  Google Scholar 

  28. Kern S, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294–301.

    Article  CAS  PubMed  Google Scholar 

  29. Chen C-J, et al. Transplantation of bone marrow stromal cells for peripheral nerve repair. Exp Neurol. 2007;204(1):443–53.

    Article  CAS  PubMed  Google Scholar 

  30. Keilhoff G, et al. Transdifferentiated mesenchymal stem cells as alternative therapy in supporting nerve regeneration and myelination. Cell Mol Neurobiol. 2006;26(7):1233–50.

    Article  Google Scholar 

  31. Wang D, et al. Bridging small-gap peripheral nerve defects using acellular nerve allograft implanted with autologous bone marrow stromal cells in primates. Brain Res. 2008;1188:44–53.

    Article  CAS  PubMed  Google Scholar 

  32. Dezawa M, et al. Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells. Eur J Neurosci. 2001;14(11):1771–6.

    Article  CAS  PubMed  Google Scholar 

  33. Tohill M, et al. Rat bone marrow mesenchymal stem cells express glial markers and stimulate nerve regeneration. Neurosci Lett. 2004;362(3):200–3.

    Article  CAS  PubMed  Google Scholar 

  34. Walsh S, Midha R. Practical considerations concerning the use of stem cells for peripheral nerve repair. Neurosurg Focus. 2009;26(2):E2.

    Article  PubMed  Google Scholar 

  35. Zuk PA, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28.

    Article  CAS  PubMed  Google Scholar 

  36. Kim EH, Heo CY. Current applications of adipose-derived stem cells and their future perspectives. World J Stem Cells. 2014;6(1):65–8.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Strem BM, et al. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med. 2005;54(3):132–41.

    Article  CAS  PubMed  Google Scholar 

  38. Locke M, Windsor J, Dunbar PR. Human adipose-derived stem cells: isolation, characterization and applications in surgery. ANZ J Surg. 2009;79(4):235–44.

    Article  PubMed  Google Scholar 

  39. Kobolak J, et al. Mesenchymal stem cells: Identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods. 2015;99:62–8.

    Article  PubMed  Google Scholar 

  40. • Mildmay-White A, Khan W. Cell surface markers on adipose-derived stem cells: a systematic review. Curr Stem Cell Res Ther. 2016;11:1.

  41. Jang S, et al. Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin. BMC Cell Biol. 2010;11(1):1–13.

    Article  Google Scholar 

  42. Jafarzadeh N, et al. Oxytocin improves neuronal differentiation of adipose tissue-derived stem cells. Cell J. 2013;15:48.

    Google Scholar 

  43. Zack-Williams SDL, Butler PE, Kalaskar DM. Current progress in use of adipose derived stem cells in peripheral nerve regeneration. World J Stem Cells. 2015;7(1):51–64.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ramasamy SK, Lenka N. Notch exhibits ligand bias and maneuvers stage-specific steering of neural differentiation in embryonic stem cells. Mol Cell Biol. 2010;30(8):1946–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. •• Widgerow AD. et al. Neuromodulatory nerve regeneration: adipose tissue-derived stem cells and neurotrophic mediation in peripheral nerve regeneration. J Neurosci Res. 2013;91(12):1517–1524.

  46. Faroni A, Terenghi G, Reid AJ. Chapter five—adipose-derived stem cells and nerve regeneration: promises and pitfalls. In: Geuna S, Bruno B, editors. International Review of Neurobiology, I.P.P.T. London: Academic Press; 2013. p. 121–136.

  47. Kingham PJ, et al. Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol. 2007;207(2):267–74.

    Article  CAS  PubMed  Google Scholar 

  48. di Summa PG, et al. Adipose-derived stem cells enhance peripheral nerve regeneration. J Plast Reconstr Aesthet Surg. 2010;63(9):1544–52.

    Article  PubMed  Google Scholar 

  49. di Summa PG, et al. Long-term in vivo regeneration of peripheral nerves through bioengineered nerve grafts. Neuroscience. 2011;181:278–91.

    Article  PubMed  Google Scholar 

  50. Wang Y, et al. Recellularized nerve allografts with differentiated mesenchymal stem cells promote peripheral nerve regeneration. Neurosci Lett. 2012;514(1):96–101.

    Article  CAS  PubMed  Google Scholar 

  51. Liu G, et al. Transplantation of adipose-derived stem cells for peripheral nerve repair. Int J Mol Med. 2011;28(4):565–72.

    PubMed  Google Scholar 

  52. Santiago LY, et al. Delivery of adipose-derived precursor cells for peripheral nerve repair. Cell Transplant. 2009;18(2):145–58.

    Article  PubMed  Google Scholar 

  53. Shen C-C, Yang Y-C, Liu B-S. Peripheral nerve repair of transplanted undifferentiated adipose tissue-derived stem cells in a biodegradable reinforced nerve conduit. J Biomed Mater Res. 2012;100A(1):48–63.

    Article  CAS  Google Scholar 

  54. Xu Y, et al. A silk fibroin/collagen nerve scaffold seeded with a co-culture of Schwann Cells and adipose-derived stem cells for Sciatic nerve regeneration. PLoS ONE. 2016;11(1):e0147184.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Reichenberger MA, et al. ADSCs in a fibrin matrix enhance nerve regeneration after epineural suturing in a rat model. Microsurgery. 2016;36(6):491–500.

    Article  PubMed  Google Scholar 

  56. • Matsumine H, et al. Facial-nerve regeneration ability of a hybrid artificial nerve conduit containing uncultured adipose-derived stromal vascular fraction: an experimental study. Microsurgery. 2016.

  57. Mohammadi R, et al. Repair of nerve defect with chitosan graft supplemented by uncultured characterized stromal vascular fraction in streptozotocin induced diabetic rats. Int J Surg. 2014;12(1):33–40.

    Article  PubMed  Google Scholar 

  58. Mohammadi R, et al. Transplantation of uncultured omental adipose-derived stromal vascular fraction improves sciatic nerve regeneration and functional recovery through inside-out vein graft in rats. J Trauma Acute Care Surg. 2012;72(2):390–6.

    Article  PubMed  Google Scholar 

  59. Cosmetic surgery national data bank statistics for 2013. September 20, 2016; http://www.surgery.org/sites/default/files/Stats2013_3.pdf.

  60. Brattain K. Analysis of the peripheral nerve repair market in the United States. 2013.

  61. Wilson D. A troubled past? Reassessing ethics in the history of tissue culture. Health Care Anal. 2016;24:246–59.

    Article  PubMed  Google Scholar 

  62. Harbaugh JT. Do you own your 3D bioprinted body?: analyzing property issues at the intersection of digital information and biology. Am J Law Med. 2014;41(1):167–89.

    Article  Google Scholar 

  63. ASTM E23-12c Standard test methods for notched bar impact testing of metallic materials. 2012;http://dx.doi.org/10.1520/E0023-12C.

  64. Guidance for industry. regulation of human cells, tissues, and cellular and tissue-based products (HCT/Ps). 2007; http://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/Tissue/ucm062592.pdf.

  65. Vériter S, et al. Human adipose-derived mesenchymal stem cells in cell therapy: safety and feasibility in different “hospital exemption” clinical applications. PLoS ONE. 2015;10(10):e0139566.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bowles AC, Scruggs BA, Bunnell B. Mesenchymal stem cell-based therapy in a mouse model of experimental autoimmune encephalomyelitis (EAE). In: Animal models for stem cell therapy. Methods in molecular biology, vol. 1213. New York: Springer; 2014. p. 303–19.

Download references

Acknowledgements

Dr. Ravnic is supported by a Penn State Department of Surgery Grant and by the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health under BIRCWH award number K12HD055882, “Career Development Program in Women’s Health Research at Penn State.” The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sprague W. Hazard III.

Additional information

This article is part of the Topical Collection on Traumatic Brain Injury Surgery.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leberfinger, A.N., Ravnic, D.J., Payne, R. et al. Adipose-Derived Stem Cells in Peripheral Nerve Regeneration. Curr Surg Rep 5, 5 (2017). https://doi.org/10.1007/s40137-017-0169-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40137-017-0169-2

Keywords

Navigation