Skip to main content

Advertisement

Log in

Meniere’s Disease: Genetics and the Immune System

  • Otology (A Vambutas, Section Editor)
  • Published:
Current Otorhinolaryngology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review was to describe the ongoing research that supports that Meniere’s disease (MD) is a heterogeneous set of clinical disorders.

Recent Findings

Different clinical subgroups of patients have been identified, which may have different etiological factors. Genes associated to the initiation or progression of MD can be classified in four main categories: immune-associated, proliferation and cell survival, cell surface channels, and extracellular matrix proteins. Two major mechanisms have been involved in MD, the innate immune response involving proinflammatory cytokines and NF-κB-mediated inflammation, but the molecular events that initiate the disorder are not known. The challenge of the immune system by antigens or allergic reactions may involve several targets in the cochlea, such as the endolymphatic sac or the spiral ligament, leading to inflammation and finally endolymphatic hydrops.

Summary

Several clinical variants have been described, and genetic and immunological factors seem to play a central role in MD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Lopez-Escamez JA, Carey J, Chung WH, Goebel JA, Magnusson M, Mandalà M, et al. Diagnostic criteria for Menière’s disease. J Vestib Res. 2015;25(1):1–7. https://doi.org/10.3233/VES-150549. Consensus document developed by the Barany Society Classification Committee in acordance with AAO-HNS, EAONO, Japan Society for Equilibrium Research and Korean Balance Society.

    PubMed  Google Scholar 

  2. Espinosa-Sanchez JM, Lopez-Escamez JA. Menière’s disease. In: Furman J, Lempert T, editors. Handb. Clin. Neurol. Amsterdam: Elsevier; 2016. p. 257–77.

    Google Scholar 

  3. Hallpike C. Ménière’s Disease. Postgr Med J. 1955;31(357):330–40. https://doi.org/10.1136/pgmj.31.357.330.

    Article  CAS  Google Scholar 

  4. Nakashima T, Pyykkö I, Arroll MA, Casselbrant ML, Foster CA, Manzoor NF, et al. Meniere’s disease. Nat Rev Dis PrimMacmillan Publishers Limited. 2016;2:1–18. https://doi.org/10.1038/nrdp.2016.28.

    Google Scholar 

  5. Maekawa C, Kitahara T, Kizawa K, Okazaki S, Kamakura T, Horii A, et al. Expression and translocation of Aquaporin-2 in the endolymphatic sac in patients with Meniere’s disease. J Neuroendocrinol. 2010;22(11):1157–64. https://doi.org/10.1111/j.1365-2826.2010.02060.x.

    Article  CAS  PubMed  Google Scholar 

  6. Yoo T, Yazawa Y, Tomoda K, Floyd R. Type II collagen induced autoimmune endolymphatic hydrops in guinea pig. Science. 1983;222:65–7. https://doi.org/10.1016/S0531-5131(03)00813-6.

    Article  CAS  PubMed  Google Scholar 

  7. Yoo TJ, Shea J, Ge X, Sener O, Mora M, Kwon SS, et al. Presence of autoantibodies in the sera of Meniere’s disease. Ann Otol Rhinol Laryngol. 2001;110:425–9. https://doi.org/10.1016/S0531-5131(03)00813-6.

    Article  CAS  PubMed  Google Scholar 

  8. Derebery MJ, Berliner KI. Allergy and its relation to Meniere’s disease. Otolaryngol Clin N Am. 2010;43(5):1047–58. https://doi.org/10.1016/j.otc.2010.05.004.

    Article  Google Scholar 

  9. Takeda T, Takeda S, Egami N, Kakigi A, Nishioka R, Yamasoba T. Type 1 allergy-induced endolymphatic hydrops and the suppressive effect of leukotriene receptor antagonist. Otol Neurotol. 2012;33(5):886–90. https://doi.org/10.1097/MAO.0b013e3182565a27.

    Article  PubMed  Google Scholar 

  10. Merchant SN, Adams JC, Nadol JB. Pathophysiology of Ménière’s syndrome: are symptoms caused by endolymphatic hydrops? Otol Neurotol. 2005;26(1):74–81. https://doi.org/10.1097/00129492-200501000-00013.

    Article  PubMed  Google Scholar 

  11. Alexander TH, Harris JP. Current epidemiology of Meniere’s syndrome. Otolaryngol Clin North AmElsevier Ltd. 2010;43(5):965–70. https://doi.org/10.1016/j.otc.2010.05.001.

    Article  PubMed  Google Scholar 

  12. Havia M, Kentala E, Pyyko I. Prevalence of Menière’s disease in general population of southern Finland. Otolaryngol Head Neck Surg. 2005;133(5):762–8. https://doi.org/10.1016/j.otohns.2005.06.015.

    Article  PubMed  Google Scholar 

  13. Kotimäki J, Sorri M, Aantaa E, Nuutinen J. Prevalence of meniere disease in Finland. Laryngoscope. John Wiley & Sons, Inc. 1999;109:748–53. https://doi.org/10.1097/00005537-199905000-00013.

    Article  PubMed  Google Scholar 

  14. Watanabe Y, Mizukoshi K, Shojaku H, Watanabe I, Hinoki M, Kitahara M. Epidemiological and clinical characteristics of Meniere’s disease in Japan. Acta Otolaryngol. 1995;115(sup519):206–10. https://doi.org/10.3109/00016489509121906.

    Article  Google Scholar 

  15. Wladislavosky-Waserman P, Facer GW, Mokri B, Kurland LT. Meniere’s disease: a 30-year epidemiologic and clinical study in Rochester, Mn, 1951-1980. Laryngoscope. 1984;94(8):1098–102. https://doi.org/10.1288/00005537-198408000-00020.

    Article  CAS  PubMed  Google Scholar 

  16. Okafor B. Incidence of Menière’s disease. J Laryngol Otol. 1984;98(08):775–9. https://doi.org/10.1017/S0022215100147449.

    Article  CAS  PubMed  Google Scholar 

  17. • Tyrrell JS, DJD W, Ukoumunne OC, Fleming LE, Osborne NJ. Prevalence, associated factors, and comorbid conditions for Ménière’s disease. Ear Hear. 2014;35(4):e162–9. https://doi.org/10.1097/AUD.0000000000000041. Population-based epidemiology study of Meniere disease confirmed previous observation that autoimmune disorders are associated with Meniere disease.

    Article  PubMed  Google Scholar 

  18. Ohmen JD, White CH, Li X, Wang J, Fisher LM, Zhang H, et al. Genetic evidence for an ethnic diversity in the susceptibility to Ménière’s disease. Otol Neurotol. 2013;34(7):1336–41. https://doi.org/10.1097/MAO.0b013e3182868818.

    Article  PubMed  Google Scholar 

  19. Wiet RJ. Patterns of ear disease in the southwestern American Indian. Arch Otolaryngol. 1979;105:381–5.

    Article  CAS  PubMed  Google Scholar 

  20. • Belinchon A, Perez-Garrigues H, Tenias JM, Lopez A. Hearing assessment in Menière’s disease. Laryngoscope. 2011;121(3):622–6. https://doi.org/10.1002/lary.21335. This longitudinal study showed that age-normlized audiograms were able to identify unilateral (involving low and mid-frequencies) and bilateral Meniere disease (involving all frequencies).

    Article  PubMed  Google Scholar 

  21. Hietikko E, Kotimäki J, Sorri M, Männikkö M. High incidence of Meniere-like symptoms in relatives of Meniere patients in the areas of Oulu University Hospital and Kainuu Central Hospital in Finland. Eur J Med Genet. 2013;56(6):279–85. https://doi.org/10.1016/j.ejmg.2013.03.010.

    Article  PubMed  Google Scholar 

  22. Morrison AW, Bailey MES, Morrison GAJ. Familial Ménière’s disease: clinical and genetic aspects. J Laryngol Otol. 2009;123(01):29–37. https://doi.org/10.1017/S0022215108002788.

    Article  CAS  PubMed  Google Scholar 

  23. •• Requena T, Espinosa-Sanchez JM, Cabrera S, Trinidad G, Soto-Varela A, Santos-Perez S, et al. Familial clustering and genetic heterogeneity in Meniere’s disease. Clin Genet. 2014;85(3):245–52. https://doi.org/10.1111/cge.12150. This is the largest cross-sectional study performed that was able to demosntrate a familial aggregation in Meniere disease and identified 76 multicase families with Meniere disease.

    Article  CAS  PubMed  Google Scholar 

  24. •• Frejo L, Soto-Varela A, Santos-Perez S, Aran I, Batuecas-Caletrio A, Perez-Guillen V, et al. Clinical subgroups in bilateral Meniere disease. Front Neurol. 2016;7:1–10. https://doi.org/10.3389/fneur.2016.00182. This study was able to identify clinical predictors for 5 subgroups of patients with bilateral Meniere disease by cluster analysis.

    Article  Google Scholar 

  25. • Frejo L, Martin-Sanz E, Teggi R, Trinidad G, Soto-Varela A, Santos-Perez S, et al. Extended phenotype and clinical subgroups in unilateral Meniere disease: a cross-sectional study with cluster analysis. Clin Otolaryngol. 2017;42(6):1–9. https://doi.org/10.1111/coa.12844. The second study performed in unilateral Meniere disease confirmed the clinical subgroups found in patients with bilateral involvement, including familial and autoimmune Meniere disease.

    Article  Google Scholar 

  26. Lee JM, Kim MJ, Jung J, Kim HJ, Seo YJ, Kim SH. Genetic aspects and clinical characteristics of familial Meniere’s disease in a South Korean population. Laryngoscope. 2015;125(9):2175–80. https://doi.org/10.1002/lary.25207.

    Article  PubMed  Google Scholar 

  27. Xenellis J, Morrison AW, McClowskey D, Festenstein H. HLA antigens in the pathogenesis of Menière’s disease. J Laryngol Otol. 1986;100(01):21–4. https://doi.org/10.1017/S0022215100098698.

    Article  CAS  PubMed  Google Scholar 

  28. Hietikko E, Kotimäki J, Okuloff A, Sorri M, Männikkö M. A replication study on proposed candidate genes in Ménière’s disease, and a review of the current status of genetic studies. Int J Audiol. 2012;51(11):841–5. https://doi.org/10.3109/14992027.2012.705900.

    Article  PubMed  Google Scholar 

  29. Gazquez I, Moreno A, Aran I, Soto-Varela A, Santos S, Perez-Garrigues H, et al. MICA-STR A.4 is associated with slower hearing loss progression in patients with Ménière’s disease. Otol Neurotol. 2012;33(2):223–9. https://doi.org/10.1097/MAO.0b013e31824296c8.

    Article  PubMed  Google Scholar 

  30. Lopez-Escamez JA, Saenz-Lopez P, Acosta L, Moreno A, Gazquez I, Perez-Garrigues H, et al. Association of a functional polymorphism of PTPN22 encoding a lymphoid protein phosphatase in bilateral Meniere’s disease. Laryngoscope. 2010;120:103–7. https://doi.org/10.1002/lary.20650.

    Article  CAS  PubMed  Google Scholar 

  31. Requena T, Gazquez I, Moreno A, Batuecas A, Aran I, Soto-Varela A, et al. Allelic variants in TLR10 gene may influence bilateral affectation and clinical course of Meniere’s disease. Immunogenetics. 2013;65(5):345–55. https://doi.org/10.1007/s00251-013-0683-z.

    Article  CAS  PubMed  Google Scholar 

  32. Furuta T, Teranishi M, Uchida Y, Nishio N, Kato K, Otake H, et al. Association of interleukin-1 gene polymorphisms with sudden sensorineural hearing loss and Ménière’s disease. Int J Immunogenet. 2011;38(3):249–54. https://doi.org/10.1111/j.1744-313X.2011.01004.x.

    Article  CAS  PubMed  Google Scholar 

  33. Gázquez I, Moreno A, Requena T, Ohmen J, Santos-Perez S, Aran I, et al. Functional variants of MIF, INFG and TFNA genes are not associated with disease susceptibility or hearing loss progression in patients with Mèniére’s disease. Eur Arch Otorhinolaryngol. 2013;270(4):1521–9. https://doi.org/10.1007/s00405-012-2268-0.

    Article  PubMed  Google Scholar 

  34. Yazdani N, Khorsandi Ashtiani MT, Zarandy MM, Mohammadi SJ, Ghazavi H, Mahrampour E, et al. Association between MIF gene variation and Meniere’s disease. Int J mmunogenet. 2013;40(6):488–91. https://doi.org/10.1111/iji.12058.

    Article  CAS  Google Scholar 

  35. Cox GM, Kithcart AP, Pitt D, Guan Z, Alexander J, Williams JL, et al. Macrophage migration inhibitory factor potentiates autoimmune-mediated neuroinflammation. J Immunol. 2013;191(3):1043–54. https://doi.org/10.4049/jimmunol.1200485.

    Article  CAS  PubMed  Google Scholar 

  36. Li L, Wang Y, An L, Kong X, Huang T. A network-based method using a random walk with restart algorithm and screening tests to identify novel genes associated with Meniere’s disease. PLoS One. 2017;12(8):e0182592. https://doi.org/10.1371/journal.pone.0182592.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cabrera S, Sanchez E, Requena T, Martinez-Bueno M, Benitez J, Perez N, et al. Intronic variants in the NFKB1 gene may influence hearing forecast in patients with unilateral sensorineural hearing loss in meniere’s disease. PLoS One. 2014;9(11):e112171. https://doi.org/10.1371/journal.pone.0112171.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Candreia C, Schmuziger N, Gürtler N. Molecular analysis of aquaporin genes 1 to 4 in patients with Menière’s disease. Cell Physiol Biochem. 2010;26(4-5):787–92. https://doi.org/10.1159/000322346.

    Article  CAS  PubMed  Google Scholar 

  39. Teranishi M, Uchida Y, Nishio N, Kato K, Otake H, Yoshida T, et al. Polymorphisms in genes involved in oxidative stress response in patients with sudden sensorineural hearing loss and Ménière’s disease in a Japanese population. DNA Cell Biol. 2012;31(10):1555–62. https://doi.org/10.1089/dna.2012.1631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. • Requena T, Cabrera S, Martín-Sierra C, Price SD, Lysakowski A, Lopez-Escamez JA. Identification of two novel mutations in FAM136A and DTNA genes in autosomal-dominant familial Meniere’s disease. Hum Mol Genet. 2015;24(4):1119–26. https://doi.org/10.1093/hmg/ddu524. This was the first family with autosomal dominant Meniere disease in three generation segragating ultrarare variants in coding regions of DTNA and FAM136A genes.

    Article  CAS  PubMed  Google Scholar 

  41. Martín-Sierra C, Requena T, Frejo L, Price SD, Gallego-Martinez A, Batuecas-Caletrio A, et al. A novel missense variant in PRKCB segregates low-frequency hearing loss in an autosomal dominant family with Meniere’s disease. Hum Mol Genet. 2016;25(16):3407–15. https://doi.org/10.1093/hmg/ddw183.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Martín-Sierra C, Gallego-Martinez A, Requena T, Frejo L, Batuecas-Caletrío A, Lopez-Escamez JA. Variable expressivity and genetic heterogeneity involving DPT and SEMA3D genes in autosomal dominant familial Meniere’s disease. Eur J Hum Genet. 2017;25(2):200–7. https://doi.org/10.1038/ejhg.2016.154.

    Article  PubMed  Google Scholar 

  43. Kim BJ, Kim AR, Han KH, Rah YC, Hyun J, Ra BS, et al. Distinct vestibular phenotypes in DFNA9 families with COCH variants. Eur Arch Oto-Rhino-Laryngol Springer Berlin Heidelberg. 2016;273(10):2993–3002. https://doi.org/10.1007/s00405-015-3885-1.

    Article  Google Scholar 

  44. Gazquez I, Soto-Varela A, Aran I, Santos S, Batuecas A, Trinidad G, et al. High prevalence of systemic autoimmune diseases in patients with Meniere’s disease. PLoS One. 2011;6(10):e26759. https://doi.org/10.1371/journal.pone.0026759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim SH, Kim JY, Lee HJ, Gi M, Kim BG, Choi JY. Autoimmunity as a candidate for the etiopathogenesis of Meniere’s disease: detection of autoimmune reactions and diagnostic biomarker candidate. PLoS One. 2014;9(10):e111039. https://doi.org/10.1371/journal.pone.0111039.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chiarella G, Di Domenico M, Petrolo C, Saccomanno M, Rothenberger R, Giordano A, et al. A proteomics-driven assay defines specific plasma protein signatures in different stages of Ménière’s disease. J Cell Biochem. 2014;115(6):1097–100. https://doi.org/10.1002/jcb.24747.

    Article  CAS  PubMed  Google Scholar 

  47. Lopez-Escamez JA, Saenz-Lopez P, Gazquez I, Moreno A, Gonzalez-Oller C, Soto-Varela A, et al. Polymorphisms of CD16A and CD32 Fcγ receptors and circulating immune complexes in Ménière’s disease: a case-control study. BMC Med Genet. BioMed Central. 2011;12:2. https://doi.org/10.1186/1471-2350-12-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Moller MN, Kirkeby S, Vikesa J, Nielsen FC, Caye-Thomasen P. Gene expression in the human endolymphatic sac: the solute carrier molecules in endolymphatic fluid homeostasis. Otol Neurotol. 2015;36(5):915–22. https://doi.org/10.1097/MAO.0000000000000669.

    Article  PubMed  Google Scholar 

  49. Ciccarelli F, Martinis M, Ginaldi L. An update on autoinflammatory diseases. Curr Med Chem. 2014;21(3):261–9. https://doi.org/10.2174/09298673113206660303.

    Article  CAS  PubMed  Google Scholar 

  50. Vambutas A, Pathak S. AAO: autoimmune and autoinflammatory (disease) in otology: what is new in immune-mediated hearing loss. Laryngoscope Investig Otolaryngol. 2016;1(5):110–5. https://doi.org/10.1002/lio2.28.

    Article  PubMed  PubMed Central  Google Scholar 

  51. •• Nakanishi H, Kawashima Y, Kurima K, Chae JJ, Ross AM, Pinto-Patarroyo G, et al. NLRP3 mutation and cochlear autoinflammation cause syndromic and nonsyndromic hearing loss DFNA34 responsive to anakinra therapy. Proc Natl Acad Sci U S A. 2017;114(37):E7766–75. This study describes NLRP3-mediated inflammation pathway as a potential mechanism for autoinflammatory inner ear diseease associated with sensorineural hearing loss and elevated IL1-β. https://doi.org/10.1073/pnas.1702946114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. House JW, Doherty JK, Fisher LM, Derebery MJ, Berliner KI. Meniere’s disease: prevalence of contralateral ear involvement. Otol Neurotol. 2006;27(3):355–61. https://doi.org/10.1097/00129492-200604000-00011.

    Article  PubMed  Google Scholar 

  53. McCabe BF. Autoimmune sensorineural hearing loss. Ann Otol Rhinol Laryngol. 1979;88(5):585–9. https://doi.org/10.1177/000348947908800501.

    Article  CAS  PubMed  Google Scholar 

  54. Ruckenstein MJ. Autoimmune inner ear disease. Curr Opin Otolaryngol Head Neck Surg. 2004;12(5):426–30. https://doi.org/10.1097/01.moo.0000136101.95662.aa.

    Article  PubMed  Google Scholar 

  55. • Pathak S, Goldofsky E, Vivas EX, Bonagura VR, Vambutas A. IL-1β is overexpressed and aberrantly regulated in corticosteroid nonresponders with autoimmune inner ear disease. J Immunol. 2011;186:1870–9. https://doi.org/10.4049/jimmunol.1002275. This study describes the mechanism of resistence to oral steroids.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vambutas A, Lesser M, Mullooly V, Pathak S, Zahtz G, Rosen L, et al. Early efficacy trial of anakinra in corticosteroid-resistant autoimmune inner ear disease. J Clin Invest. 2014;124(9):4115–22. https://doi.org/10.1172/JCI76503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pathak S, McDermott MF, Savic S. Autoinflammatory diseases: update on classification diagnosis and management. J Clin Pathol. 2017;70(1):1–8. https://doi.org/10.1136/jclinpath-2016-203810.

    Article  CAS  PubMed  Google Scholar 

  58. Greco A, Gallo A, Fusconi M, Marinelli C, Macri GF, De Vincentiis M. Meniere’s disease might be an autoimmune condition? Autoimmun Rev Elsevier BV. 2012;11(10):731–8. https://doi.org/10.1016/j.autrev.2012.01.004.

    Article  CAS  PubMed  Google Scholar 

  59. Riente L, Bongiorni F, Nacci A, Migliorini P, Segnini G, Delle Sedie A, et al. Antibodies to inner ear antigens in Meniere’s disease. Clin Exp Immunol. 2004;135(1):159–63. https://doi.org/10.1046/j.1365-2249.2004.02317.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xu W-D, Zhao Y, Liu Y. Role of the TWEAK/Fn14 pathway in autoimmune diseases. Immunol Res. 2016;64(1):44–50. https://doi.org/10.1007/s12026-015-8761-y.

    Article  CAS  PubMed  Google Scholar 

  61. Duke W. Ménière’s syndrome caused by allergy. JAMA J Am Med Assoc. 1923;81(26):2179. https://doi.org/10.1001/jama.1923.02650260021006.

    Article  Google Scholar 

  62. Derebery MJ, Berliner KI. Prevalence of allergy in Meniere’s disease. Otolaryngol Neck Surg. 2000;123(1):69–75. https://doi.org/10.1067/mhn.2000.105715.

    Article  CAS  Google Scholar 

  63. Balakireva AV, Zamyatnin AA Jr. Properties of gluten intolerance: gluten structure, evolution, Pathogenicity and Detoxification Capabilities. Nutrients. 2016;8(10):E644. https://doi.org/10.3390/nu8100644.

    Article  PubMed  Google Scholar 

  64. Di Berardino F, Cesarani A. Gluten sensitivity in Meniere’s disease. Laryngoscope. 2012;122(3):700–2. https://doi.org/10.1002/lary.22492.

    Article  PubMed  Google Scholar 

  65. Topuz B, Ögmen G, Ardiç FN, Kara CO. Provocation of endolymphatic hydrops with a prick test in Meniere’s disease. Adv Ther. 2007;24(4):819–25. https://doi.org/10.1007/BF02849975.

    Article  PubMed  Google Scholar 

  66. Keles E, Gödekmerdan A, Kalidag T, Kaygusuz I, Yalçin S, Cengiz Alpay H, et al. Ménière’s disease and allergy: allergens and cytokines. J Laryngol Otol. 2004;118(09):688–93. https://doi.org/10.1258/0022215042244822.

    Article  PubMed  Google Scholar 

  67. Savastano M, Giacomelli L, Marioni G. Non-specific immunological determinations in Meniere’s disease: any role in clinical practice? Eur Arch Oto-Rhino-Laryngol. 2007;264(1):15–9. https://doi.org/10.1007/s00405-006-0147-2.

    Article  Google Scholar 

  68. Dagli M, Goksu N, Eryilmaz A, Mocan Kuzey G, Bayazit Y, Gun BD, et al. Expression of histamine receptors (H1, H2, and H3) in the rabbit endolymphatic sac: an immunohistochemical study. Am J Otolaryngol - Head Neck Med Surg. 2008;29(1):20–3. https://doi.org/10.1016/j.amjoto.2006.12.003.

    CAS  Google Scholar 

  69. Takumida M, Takumida H, Anniko M. Localization of histamine (H1, H2, H3 and H4 ) receptors in mouse inner ear. Acta Otolaryngol. 2016;136(6):537–44. https://doi.org/10.3109/00016489.2015.1136433.

    Article  CAS  PubMed  Google Scholar 

  70. Egami N, Kakigi A, Takeda T, Takeda S, Nishioka R, Hyodo M, et al. Type 1 allergy-induced endolymphatic hydrops and the suppressive effect of H1-receptor antagonist (olopatadine hydrochloride). Otol Neurotol. 2014;35(3):104–9. https://doi.org/10.1097/MAO.0000000000000195.

    Article  Google Scholar 

  71. •• Adrion C, Fischer CS, Wagner J, Gürkov R, Mansmann U, Strupp M. Efficacy and safety of betahistine treatment in patients with Meniere’s disease: primary results of a long term, multicentre, double blind, randomised, placebo controlled, dose defining trial (BEMED trial). BMJ. 2016;352:h6816. https://doi.org/10.1136/bmj.h6816. BMJ Publishing Group. This multicentre randomized clinical trial showed that betahistine at low or high dosage has no benefit compared to placebo.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lezius F, Adrion C, Mansmann U, Jahn K, Strupp M. High-dosage betahistine dihydrochloride between 288 and 480 mg/day in patients with severe Menière’s disease: a case series. Eur Arch Oto-Rhino-Laryngol. 2011;268(8):1237–40. https://doi.org/10.1007/s00405-011-1647-2.

    Article  Google Scholar 

  73. Kim M, Kim K-S. Vestibular function change in a vasopressin-induced hydrops model. Otol Neurotol. 2017;38(10):e495–500. https://doi.org/10.1097/MAO.0000000000001574.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

JALE is supported by Grants from Meniere’s Society, UK, PI17/01644 Grant from ISCIII by FEDER Funds from EU and H2020-MSCA-ITN-2016–722046 from EU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose A. Lopez Escamez.

Ethics declarations

Conflict of Interest

The authors declare that they do not have any conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional research committee standards, and international guidelines.

Additional information

This article is part of the Topical Collection on Otology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flook, M., Lopez Escamez, J.A. Meniere’s Disease: Genetics and the Immune System. Curr Otorhinolaryngol Rep 6, 24–31 (2018). https://doi.org/10.1007/s40136-018-0182-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40136-018-0182-8

Keywords

Navigation