Skip to main content

Advertisement

Log in

Intracranial Pressure and Its Relationship to Glaucoma

  • Diagnosis and Monitoring of Glaucoma (J Kammer, Section Editor)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

While the pathophysiology of glaucoma remains elusive, a growing body of evidence suggests that intracranial pressure may play a significant role. This review aims to highlight recent findings on the role of intracranial pressure in the development of glaucomatous optic neuropathy.

Recent Findings

The translaminar pressure gradient is defined as intraocular pressure (IOP) minus intracranial pressure (ICP) divided by the thickness of the lamina cribrosa. Prior research has demonstrated the effect of elevated IOP of ganglion cell apoptosis, but newer research shows that ganglion cell death may occur with normal IOP but reduced ICP. Additionally, patients with normal tension glaucoma have lower ICPs than controls. Stresses and strains on the lamina cribrosa may be responsible for some of the development of glaucomatous optic neuropathy.

Summary

The pathophysiology of glaucomatous optic neuropathy may include a delicate balance of the translaminar pressure differential involving intraocular pressure, intracranial pressure, and lamina cribrosa biomechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Quigley HA. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3):262–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kwon YH, Fingert JH, Kuehn MH, Alward WLM. Primary open-angle glaucoma. N Engl J Med. 2009;360(11):1113–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sommer A, Tielsch JM, Katz J, Quigley HA, Gottsch JD, Javitt J, et al. Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. Baltim Eye Survey Arch Ophthalmol. 1991;109(8):1090–5.

    CAS  Google Scholar 

  4. Iwase A, Suzuki Y, Araie M, Yamamoto T, Abe H, Shirato S, et al. The prevalence of primary open-angle glaucoma in Japanese: the Tajimi Study. Ophthalmology. 2004;111(9):1641–8.

    PubMed  Google Scholar 

  5. Jin SW, Noh SY. Long-term clinical course of normal-tension glaucoma: 20 years of experience. J Ophthalmol. 2017;2017:2651645.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Berdahl JP, Allingham RR. Intracranial pressure and glaucoma. Curr Opin Ophthalmol. 2010;21(2):106–11.

    Article  PubMed  Google Scholar 

  7. Berdahl JP, Allingham RR, Johnson DH. Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma. Ophthalmology. 2008;115(5):763–8.

    Article  PubMed  Google Scholar 

  8. Wang YX, Xu L, Wei WB, Jonas JB. n.d. Intraocular pressure and its normal range adjusted for ocular and systemic parameters. The Beijing Eye Study 2011. PLoS One [Internet]. [cited 2020 Nov 2];13(5)

  9. Magnaes B. Body position and cerebrospinal fluid pressure. Part 2: clinical studies on orthostatic pressure and the hydrostatic indifferent point. J Neurosurg. 1976;44(6):698–705.

    Article  CAS  PubMed  Google Scholar 

  10. Berdahl JP, Fautsch MP, Stinnett SS, Allingham RR. Intracranial pressure in primary open angle glaucoma, normal tension glaucoma, and ocular hypertension: a case-control study. Invest Ophthalmol Vis Sci. 2008;49(12):5412–8.

    Article  PubMed  Google Scholar 

  11. Ren R, Jonas JB, Tian G, Zhen Y, Ma K, Li S, et al. Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmology. 2010;117(2):259–66.

    Article  PubMed  Google Scholar 

  12. Fleischman D, Berdahl JP, Zaydlarova J, Stinnett S, Fautsch MP, Allingham RR. Cerebrospinal fluid pressure decreases with older age. PLoS One. 2012;7(12):e52664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. •• Gallina P, Savastano A, Becattini E, Orlandini S, Scollato A, Rizzo S, et al. Glaucoma in patients with shunt-treated normal pressure hydrocephalus. J Neurosurg. 2018;129(4):1078–84 Study demonstrates that patients with reduced ICP but normal IOP develop glaucomatous optic neuropathy.

    Article  PubMed  Google Scholar 

  14. Yang D, Fu J, Hou R, Liu K, Jonas JB, Wang H, et al. Optic Neuropathy induced by experimentally reduced cerebrospinal fluid pressure in monkeys. Invest Ophthalmol Vis Sci. 2014;55(5):3067–73.

    Article  PubMed  Google Scholar 

  15. Quigley HA, Addicks EM. Chronic experimental glaucoma in primates. II. Effect of extended intraocular pressure elevation on optic nerve head and axonal transport. Invest Ophthalmol Vis Sci. 1980;19(2):137–52.

    CAS  PubMed  Google Scholar 

  16. Balaratnasingam C, Morgan WH, Bass L, Cringle SJ, Yu D-Y. Time-dependent effects of elevated intraocular pressure on optic nerve head axonal transport and cytoskeleton proteins. Investig Opthalmol Vis Sci. 2008;49(3):986.

    Article  Google Scholar 

  17. • Zhang Z, Wu S, Liu K, Zhang J, Liu Q, Li L, et al. Time-dependent effects of reduced cerebrospinal fluid pressure on optic nerve retrograde axonal transport. Investig Opthalmol Vis Sci. 2020;61(5):6 Basic science research showing impaired axonal transport with reduced ICP.

    Article  CAS  Google Scholar 

  18. Sigal IA, Flanagan JG, Tertinegg I, Ethier CR. Predicted extension, compression and shearing of optic nerve head tissues. Exp Eye Res. 2007;85(3):312–22.

    Article  CAS  PubMed  Google Scholar 

  19. Morgan WH, Yu DY, Cooper RL, Alder VA, Cringle SJ, Constable IJ. The influence of cerebrospinal fluid pressure on the lamina cribrosa tissue pressure gradient. Invest Ophthalmol Vis Sci. 1995;36(6):1163–72.

    CAS  PubMed  Google Scholar 

  20. Leske MC, Heijl A, Hyman L, Bengtsson B, Dong L, Yang Z, et al. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology. 2007;114(11):1965–72.

    Article  PubMed  Google Scholar 

  21. Lee EJ, Kim T-W, Weinreb RN, Kim H. Reversal of lamina cribrosa displacement after intraocular pressure reduction in open-angle glaucoma. Ophthalmology. 2013;120(3):553–9.

    Article  PubMed  Google Scholar 

  22. Han JC, Choi D-Y, Kwun YK, Suh W, Kee C. Evaluation of lamina cribrosa thickness and depth in ocular hypertension. Jpn J Ophthalmol. 2016;60(1):14–9.

    Article  PubMed  Google Scholar 

  23. Yang H, Thompson H, Roberts MD, Sigal IA, Downs JC, Burgoyne CF. Deformation of the early glaucomatous monkey optic nerve head connective tissue after acute IOP elevation in 3-D histomorphometric reconstructions. Invest Ophthalmol Vis Sci. 2011;52(1):345–63.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Roberts MD, Grau V, Grimm J, Reynaud J, Bellezza AJ, Burgoyne CF, et al. Remodeling of the connective tissue microarchitecture of the lamina cribrosa in early experimental glaucoma. Invest Ophthalmol Vis Sci. 2009;50(2):681–90.

    Article  PubMed  Google Scholar 

  25. •• Baneke AJ, Aubry J, Viswanathan AC, Plant GT. The role of intracranial pressure in glaucoma and therapeutic implications. Eye Lond Engl. 2020;34(1):178–91 Review article summarizing current theories of the relationship of ICP in glaucoma.

    Google Scholar 

  26. Feola AJ, Myers JG, Raykin J, Mulugeta L, Nelson ES, Samuels BC, et al. Finite element modeling of factors influencing optic nerve head deformation due to intracranial pressure. Invest Ophthalmol Vis Sci. 2016;57(4):1901–11.

    Article  PubMed  Google Scholar 

  27. Hua Y, Voorhees AP, Sigal IA. Cerebrospinal fluid pressure: revisiting factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci. 2018;59(1):154–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. • Wang B, Tran H, Smith MA, Kostanyan T, Schmitt SE, Bilonick RA, et al. In-vivo effects of intraocular and intracranial pressures on the lamina cribrosa microstructure. PLoS One. 2017;12(11):e0188302 Study demonstrating the effect of raised IOP or lowered ICP on the lamina cribrosa.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Skrzypecki J, Ufnal M. The upright body position increases translaminar pressure gradient in normotensive and hypertensive rats. Curr Eye Res. 2017;42(12):1634–7.

    Article  PubMed  Google Scholar 

  30. Lee AG, Mader TH, Gibson CR, Tarver W, Rabiei P, Riascos RF, et al. Spaceflight associated neuro-ocular syndrome (SANS) and the neuro-ophthalmologic effects of microgravity: a review and an update. Npj Microgravity. 2020;6(1):7.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Killer HE, Laeng HR, Flammer J, Groscurth P. Architecture of arachnoid trabeculae, pillars, and septa in the subarachnoid space of the human optic nerve: anatomy and clinical considerations. Br J Ophthalmol. 2003;87(6):777–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Killer HE, Jaggi GP, Flammer J, Miller NR, Huber AR. The optic nerve: a new window into cerebrospinal fluid composition? Brain J Neurol. 2006;129(Pt 4):1027–30.

    Article  CAS  Google Scholar 

  33. Killer HE, Miller NR, Flammer J, Meyer P, Weinreb RN, Remonda L, et al. Cerebrospinal fluid exchange in the optic nerve in normal-tension glaucoma. Br J Ophthalmol. 2012;96(4):544–8.

    Article  PubMed  Google Scholar 

  34. Killer HE, Subramanian PS. Compartmentalized cerebrospinal fluid. Int Ophthalmol Clin. 2014;54(1):95–102.

    Article  PubMed  Google Scholar 

  35. Hou R, Zhang Z, Yang D, Wang H, Chen W, Li Z, et al. Pressure balance and imbalance in the optic nerve chamber: the Beijing Intracranial and Intraocular Pressure (iCOP) Study. Sci China Life Sci. 2016;59(5):495–503.

    Article  PubMed  Google Scholar 

  36. Hou R, Zhang Z, Yang D, Wang H, Chen W, Li Z, et al. Intracranial pressure (ICP) and optic nerve subarachnoid space pressure (ONSP) correlation in the optic nerve chamber: the Beijing Intracranial and Intraocular Pressure (iCOP) study. Brain Res. 2016;1635:201–8.

    Article  CAS  PubMed  Google Scholar 

  37. Jaggi GP, Harlev M, Ziegler U, Dotan S, Miller NR, Killer HE. Cerebrospinal fluid segregation optic neuropathy: an experimental model and a hypothesis. Br J Ophthalmol. 2010;94(8):1088–93.

    Article  PubMed  Google Scholar 

  38. Raman P, Suliman NB, Zahari M, Kook M, Ramli N. Low nocturnal diastolic ocular perfusion pressure as a risk factor for NTG progression: a 5-year prospective study. Eye Lond Engl. 2018;32(7):1183–9.

    Google Scholar 

  39. Promelle V, Daouk J, Bouzerar R, Jany B, Milazzo S, Balédent O. Ocular blood flow and cerebrospinal fluid pressure in glaucoma. Acta Radiol Open. 2016;5(2):2058460115624275.

    PubMed  PubMed Central  Google Scholar 

  40. Siaudvytyte L, Januleviciene I, Daveckaite A, Ragauskas A, Siesky B, Harris A. Neuroretinal rim area and ocular haemodynamic parameters in patients with normal-tension glaucoma with differing intracranial pressures. Br J Ophthalmol. 2016;100(8):1134–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian M. Shafer.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Diagnosis and Monitoring of Glaucoma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

VanderZee, B., Shafer, B.M. & Berdahl, J.P. Intracranial Pressure and Its Relationship to Glaucoma. Curr Ophthalmol Rep 9, 83–87 (2021). https://doi.org/10.1007/s40135-021-00267-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-021-00267-z

Keywords

Navigation