Skip to main content

Advertisement

Log in

Recent Advances in Biosynthetic Corneal Substitutes

  • Cornea (P Hamrah and T Yamaguchi, Section Editors)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Regeneration of the corneal epithelium and endothelium has been achieved, but regeneration of the corneal stroma has not, because it has several remarkable properties, including high tensile strength, thrust resistance, and high transparency. We introduce several biosynthetic approaches to creating stromal substitutes closely resembling the native human corneal stroma are currently being studied.

Recent Findings

Currently, there are five approaches to regenerate corneal stroma: (1) decellularization, (2) the use of human recombinant collagen (HRC), (3) optical clarification (and lamination), (4) cell-based regeneration, and (5) organoid generation with induced pluripotent stem (iPS) cells.

Summary

Immediate next steps for this area of research include clinical trials of decellularized stromal scaffolds created from porcine corneas or RHC. While these methods have both advantages and disadvantages, their refinement and clinical use, as well as the use of other methods, promise to lead to the continuing development of new approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda R, De Luca M. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet. 1997;349:990–3.

    Article  PubMed  CAS  Google Scholar 

  2. Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med. 2004;351:1187–96.

    Article  PubMed  CAS  Google Scholar 

  3. Okumura N, Sakamoto Y, Fujii K, Kitano J, Nakano S, Tsujimoto Y, et al. Rho kinase inhibitor enables cell-based therapy for corneal endothelial dysfunction. Sci Rep. 2016;6:26113. https://doi.org/10.1038/srep26113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Yam GHF, Yusoff NZBM, Goh TW, Setiawan M, Lee XW, Liu YC, et al. Decellularization of human stromal refractive lenticules for corneal tissue engineering. Sci Rep. 2016;6:26339. https://doi.org/10.1038/srep26339.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. • Zhang MC, Liu X, Jin Y, Jiang DL, Wei XS, Xie HT. Lamellar keratoplasty treatment of fungal corneal ulcers with acellular porcine corneal stroma. Am J Transplant. 2015;15:1068–75. https://doi.org/10.1111/ajt.13096. This study suggests that these acellular scaffolds steadily gains transparency in most patients and are sufficient for restoring visual acuity.

    Article  PubMed  Google Scholar 

  6. •• Fagerholm P, Lagali NS, Ong JA, Merrett K, Jackson WB, Polarek JW, et al. Stable corneal regeneration four years after implantation of a cell-free recombinant human collagen scaffold. Biomaterials. 2014;35:2420–7. https://doi.org/10.1016/j.biomaterials.2013.11.079. This study suggests that RHC stromal scaffolds may seem to be the currently most-advanced clinical method for biosynthesizing stromal substitutes.

    Article  PubMed  CAS  Google Scholar 

  7. • Hariya T, Tanaka Y, Yokokura S, Nakazawa T. Transparent, resilient human amniotic membrane laminates for corneal transplantation. Biomaterials. 2016;101:76–85. https://doi.org/10.1016/j.biomaterials.2016.05.038. This study suggests that laminated, cross-linked amnion membrane has high transparency, high resistance to piercing damage, and high biocompatibility.

    Article  PubMed  CAS  Google Scholar 

  8. Greene CA, Green CR, Dickinson ME, Johnson V, Sherwin T. Keratocytes are induced to produce collagen type II: a new strategy for in vivo corneal matrix regeneration. Exp Cell Res. 2016;347:241–9. https://doi.org/10.1016/j.yexcr.2016.08.010.

    Article  PubMed  CAS  Google Scholar 

  9. Boroumand S, Asadpour S, Akbarzadeh A, Faridi-Majidi R, Ghanbari H. Heart valve tissue engineering: an overview of heart valve decellularization processes. Regen Med. 2018;13:41–54. https://doi.org/10.2217/rme-2017-0061.

    Article  PubMed  CAS  Google Scholar 

  10. Moore MA, Samsell B, Wallis G, Triplett S, Chen S, Jones AL, et al. Decellularization of human dermis using non-denaturing anionic detergent and endonuclease: a review. Cell Tissue Bank. 2015;16:249–59. https://doi.org/10.1007/s10561-014-9467-4.

    Article  PubMed  Google Scholar 

  11. Xu K, Kuntz LA, Foehr P, Kuempel K, Wagner A, Tuebel J, et al. Efficient decellularization for tissue engineering of the tendon-bone interface with preservation of biomechanics. PLoS One. 2017;12:e0171577. https://doi.org/10.1371/journal.pone.0171577.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Amano S, Shimomura N, Yokoo S, Araki-Sasaki K, Yamagami S. Decellularizing corneal stroma using N2 gas. Mol Vis. 2008;14:878–82.

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Sasaki S, Funamoto S, Hashimoto Y, Kimura T, Honda T, Hattori S, et al. In vivo evaluation of a novel scaffold for artificial corneas prepared by using ultrahigh hydrostatic pressure to decellularize porcine corneas. Mol Vis. 2009;15:2022–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Hashimoto Y, Funamoto S, Sasaki S, Negishi J, Honda T, Hattori S, et al. Corneal regeneration by deep anterior lamellar keratoplasty (DALK) using decellularized corneal matrix. PLoS One. 2015;10:e0131989. https://doi.org/10.1371/journal.pone.0131989.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Liu W, Merrett K, Griffith M, Fagerholm P, Dravida S, Heyne B, et al. Recombinant human collagen for tissue engineered corneal substitutes. Biomaterials. 2008;29:1147–58.

    Article  PubMed  CAS  Google Scholar 

  16. Fagerholm P, Lagali NS, Merrett K, Jackson WB, Munger R, Liu Y, et al. A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-month follow-up of a phase 1 clinical study. Sci Transl Med. 2010;2:46–61. https://doi.org/10.1126/scitranslmed.3001022.

    Article  CAS  Google Scholar 

  17. Hackett JM, Lagali N, Merrett K, Edelhauser H, Sun Y, Gan L, et al. Biosynthetic corneal implants for replacement of pathologic corneal tissue: performance in a controlled rabbit alkali burn model. Invest Ophthalmol Vis Sci. 2011;52:651–7.

    Article  PubMed  CAS  Google Scholar 

  18. Yumoto H, Hirota K, Hirao K, Miyazaki T, Yamamoto N, Miyamoto K, et al. Anti-inflammatory and protective effects of 2-methacryloyloxyethyl phosphorylcholine polymer on oral epithelial cells. J Biomed Mater Res A. 2015;103:555–63. https://doi.org/10.1002/jbm.a.35201.

  19. Tanaka Y, Baba K, Duncan TJ, Kubota A, Asahi T, Quantock AJ, et al. Transparent, tough collagen laminates prepared by oriented flow casting, multi-cyclic vitrification and chemical cross-linking. Biomaterials. 2011;32:3358–66. https://doi.org/10.1016/j.biomaterials.2010.11.011.

    Article  PubMed  CAS  Google Scholar 

  20. Tanaka Y, Kubota A, Yamato M, Okano T, Nishida K. Irreversible optical clearing of sclera by dehydration and cross-linking. Biomaterials. 2011;32:1080–90. https://doi.org/10.1016/j.biomaterials.2010.10.002.

    Article  PubMed  CAS  Google Scholar 

  21. Tanaka Y, Shi D, Kubota A, Takano Y, Fuse N, Yamato M, et al. Irreversible optical clearing of rabbit dermis for autogenic corneal stroma transplantation. Biomaterials. 2011;32:6764–72. https://doi.org/10.1016/j.biomaterials.2011.05.081.

    Article  PubMed  CAS  Google Scholar 

  22. Tanaka Y, Kubota A, Yokokura S, Uematsu M, Shi D, Yamato M, et al. Optical mechanical refinement of human amniotic membrane by dehydration and cross-linking. J Tissue Eng Regen Med. 2012;6:731–7. https://doi.org/10.1002/term.479.

    Article  PubMed  CAS  Google Scholar 

  23. Beales MP, Funderburgh JL, Jester JV, Hassell JR. Proteoglycan synthesis by bovine keratocytes and corneal fibroblasts: maintenance of the keratocyte phenotype in culture. Invest Ophthalmol Vis Sci. 1999;40:1658–63.

    PubMed  CAS  Google Scholar 

  24. Gouveia RM, Connon CJ. The effects of retinoic acid on human corneal stromal keratocytes cultured in vitro under serum-free conditions. Invest Ophthalmol Vis Sci. 2013;54:7483–91.

    Article  PubMed  CAS  Google Scholar 

  25. Gouveia RM, Jones RR, Hamley IW, Connon CJ. The bioactivity of composite Fmoc-RGDS-collagen gels. Biomaterials Sci. 2014;2(9):1222–9.

    Article  CAS  Google Scholar 

  26. Zhang S, Espandar L, Imhof KM, Bunnell BA. Differentiation of human adipose-derived stem cells along the keratocyte lineage. J Clin Exp Ophthalmol. 2013;2013:4. https://doi.org/10.4172/2155-9570.1000270.

    Article  Google Scholar 

  27. Karamichos D, Rich CB, Hutcheon AE, Ren R, Saitta B, Trinkaus-Randall V, et al. Self-assembled matrix by umbilical cord stem cells. J Funct Biomater. 2011;2:213–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Du Y, Sundarraj N, Funderburgh ML, Harvey SA, Birk DE, Funderburgh JL. Secretion and organization of a cornea-like tissue in vitro by stem cells from human corneal stroma. Invest Ophthalmol Vis Sci. 2007;48:5038–45.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Basu S, Hertsenberg AJ, Funderburgh ML, Burrow MK, Mann MM, Du Y, et al. Human limbal biopsy-derived stromal stem cells prevent corneal scarring. Sci Transl Med. 2014;6:266272.

    Article  CAS  Google Scholar 

  30. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 2011;472:51–6. https://doi.org/10.1038/nature09941.

    Article  PubMed  CAS  Google Scholar 

  31. James WF, Wahlin K, Adams SM, Birk DE, Zack DJ, Chakravarti S. Cornea organoids from human induced pluripotent stem cells. Sci Rep. 2017;7:41286. https://doi.org/10.1038/srep41286.

    Article  CAS  Google Scholar 

  32. Susaimanickam PJ, Maddileti S, Pulimamidi VK, Boyinpally SR, Naik RR, Naik MN, et al. Generating minicorneal organoids from human induced pluripotent stem cells. Development. 2017;144:2338–51. https://doi.org/10.1242/dev.143040.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunji Yokokura.

Ethics declarations

Conflict of Interest

Shunji Yokokura and Yuji Tanaka declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article contains studies with human and animals. These studies followed the tenets of the Declaration of Helsinki and all study protocols were approved by the Institutional Ethics Committees of Tohoku University hospital

Additional information

This article is part of the Topical Collection on Cornea

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yokokura, S., Tanaka, Y. Recent Advances in Biosynthetic Corneal Substitutes. Curr Ophthalmol Rep 6, 200–205 (2018). https://doi.org/10.1007/s40135-018-0180-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-018-0180-5

Keywords

Navigation