Skip to main content

Advertisement

Log in

Clinical Factors for Early and Late Endothelial Cell Loss After Corneal Transplantation

  • Cornea (P Hamrah and T Yamaguchi, Section Editors)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To consider the relative importance of factors associated with post-keratoplasty endothelial cell loss.

Recent Findings

Lamellar keratoplasty continues to supplant penetrating keratoplasty. When host endothelium is healthy, retaining it with deep anterior lamellar keratoplasty significantly reduces long-term endothelial cell loss. Endothelial keratoplasty and penetrating keratoplasty differ fundamentally in relative rates of early and late central endothelial cell loss, yet at 10 years, their cumulative cell loss is similarly substantial. The greatest risk factor for post-keratoplasty endothelial decompensation is prior glaucoma filtration surgery, particularly an aqueous shunt. Interestingly, vital dye staining and sophisticated imaging software suggest that the actual viable endothelial cell density of donor corneas is often overestimated by specular microscopy, inflating estimates of early cell loss.

Summary

Corneal graft longevity is often determined by endothelial cell survival. Adoption of new surgical techniques has improved graft survival, and new imaging techniques allow more accurate preoperative endothelial cell evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Thompson RW, Price MO, Bowers PJ, Price FW. Long-term graft survival after penetrating keratoplasty. Ophthalmology. 2003;110:1396–402.

    Article  PubMed  Google Scholar 

  2. Joyce NC. Proliferative capacity of the corneal endothelium. Prog Retin Eye Res. 2003;22:359–89.

    Article  PubMed  CAS  Google Scholar 

  3. Joyce NC, Harris DL, Mello DM. Mechanisms of mitotic inhibition in corneal endothelium: contact inhibition and TGF-beta2. Invest Ophthalmol Vis Sci. 2002;43:2152–9.

    PubMed  Google Scholar 

  4. Bourne WM, Nelson LR, Hodge DO. Central corneal endothelial cell changes over a ten-year period. Invest Ophthalmol Vis Sci. 1997;38:779–82.

    PubMed  CAS  Google Scholar 

  5. Bourne WM, Nelson LR, Hodge DO. Continued endothelial cell loss ten years after lens implantation. Ophthalmology. 1994;101:1014–23.

    Article  PubMed  CAS  Google Scholar 

  6. Bourne WM, Hodge DO, Nelson LR. Corneal endothelium five years after transplantation. Am J Ophthalmol. 1994;118:185–96.

    Article  PubMed  CAS  Google Scholar 

  7. Price MO, Fairchild KM, Price FW. Comparison of manual and automated endothelial cell density analysis in normal eyes and DSEK eyes. Cornea. 2013;32:567–73.

    Article  PubMed  Google Scholar 

  8. Huang J, Maram J, Tepelus TC, Modak C, Marion K, Sadda SR, et al. Comparison of manual and automated analysis methods for corneal endothelial cell density measurements by specular microscopy. J Optom 2017;S1888–4296(17):30049–30043.

  9. Benetz BA, Lass JH, Gal RL, Sugar A, Menegay H, Dontchev M, et al. Endothelial morphometric measures to predict endothelial graft failure after penetrating keratoplasty. JAMA Ophthalmol. 2013;131:601–8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Amann J, Holley GP, Lee SB, Edelhauser HF. Increased endothelial cell density in the paracentral and peripheral regions of the human cornea. Am J Ophthalmol. 2003;135:584–90.

    Article  PubMed  Google Scholar 

  11. Jardine GJ, Holiman JD, Stoeger C, Chamberlain WD. Imaging and quantification of endothelial cell loss in eye bank prepared DMEK grafts using trainable segmentation software. Curr Eye Res. 2014;39:894–901.

    Article  PubMed  CAS  Google Scholar 

  12. •• Bhogal M, Lwin CN, Seah XY, Murugan E, Adnan K, Lin SJ. Real-time assessment of corneal endothelial cell damage following graft preparation and donor insertion for DMEK. PLoS One. 2017;12:e0184824. This study reported methods of vital dye staining and image analysis for more accurate assessment of cell loss associated with different keratoplasty techniques.

    Article  PubMed  PubMed Central  Google Scholar 

  13. •• Bhogal M, Balda MS, Matter K, Allan BD. Global cell-by-cell evaluation of endothelial viability after two methods of graft preparation in Descemet membrane endothelial keratoplasty. Br J Ophthalmol. 2016;100:572–8. This study showed that eye bank estimations of central endothelial cell density overestimate the actual viable cell density after EK tissue preparation.

    Article  PubMed  PubMed Central  Google Scholar 

  14. • AS G, Garcin T, Thuret G, He Z, Jullienne R, Trone MC, et al. Very early endothelial cell loss after penetrating keratoplasty with organ-cultured corneas. Br J Ophthalmol. 2017;101:1113–8. Using vital dye staining and sophisticated imaging software, this study showed that the viable endothelial cell density of the donor graft was substantially less than the specular microscopy reading reported by the eye bank.

    Article  Google Scholar 

  15. • Kitazawa K, Inatomi T, Tanioka H, Kawasaki S, Nakagawa H, Hieda O, et al. The existence of dead cells in donor corneal endothelium preserved with storage media. Br J Ophthalmol. 2017;101:1725–30. This study found mean dead cell rate was 5% in donor corneas stored in cold storage media.

    Article  PubMed  Google Scholar 

  16. Borderie VM, Sandali O, Bullet J, Gaujoux T, Touzeau O, Laroche L. Long-term results of deep anterior lamellar versus penetrating keratoplasty. Ophthalmology. 2012;119:249–55.

    Article  PubMed  Google Scholar 

  17. Riddlesworth TD, Kollman C, Lass JH, Patel SV, Stulting RD, Benetz BA, et al. A mathematical model to predict endothelial cell loss following penetrating keratoplasty with selective dropout from graft failure. Invest Ophthalmol Vis Sci. 2014;55:8409–15.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Price MO, Calhoun P, Kollman C, Price FW Jr, Lass JH. Descemet stripping endothelial keratoplasty: ten-year endothelial cell loss compared with penetrating keratoplasty. Ophthalmology. 2016;123:1421–7. This study used sophisticated statistical methods to model 10-year endothelial cell loss after DSEK and compared the results with 10-year cell loss after penetrating keratoplasty procedures performed in the multi-center Cornea Donor Study for similar indications.

    Article  PubMed  Google Scholar 

  19. Birnbaum F, Reinhard T, Bohringer D, Sundmacher R. Endothelial cell loss after autologous rotational keratoplasty. Graefes Arch Clin Exp Ophthalmol. 2005;243:57–9.

    Article  PubMed  Google Scholar 

  20. Matsuda M, Manabe R. The corneal endothelium following autokeratoplasty. A case report. Acta Ophthalmol (Copenh). 1988;66:54–7.

    Article  CAS  Google Scholar 

  21. Martinez JD, Galor A, Perez VL, Karp CL, Yoo SH, Alfonso EC. Endothelial graft failure after contralateral autologous corneal transplantation. Cornea. 2013;32:745–50.

    Article  PubMed  PubMed Central  Google Scholar 

  22. •• Cheng YY, Visser N, Schouten JS, Wijdh RJ, Pels E, van Cleynenbreugel H, et al. Endothelial cell loss and visual outcome of deep anterior lamellar keratoplasty versus penetrating keratoplasty: a randomized multicenter clinical trial. Ophthalmology. 2011;118:302–9.

    Article  PubMed  Google Scholar 

  23. Price MO, Gupta P, Lass J, Price FW Jr. EK (DLEK, DSEK, DMEK): new frontier in cornea surgery. Annu Rev Vis Sci. 2017;3:69–90. A comprehensive review of the evolution and current status of endothelial keratoplasty.

    Article  PubMed  Google Scholar 

  24. Armitage JW, Dick AD, Bourne WM. Predicting endothelial cell loss and long-term corneal graft survival. Invest Ophthalmol Vis Sci. 2003;44:3326–31.

    Article  PubMed  Google Scholar 

  25. •• Sugar A, Gal RL, Kollman C, Raghinaru D, Dontchev M, Croasdale C, et al. Factors predictive of corneal graft survival in the Cornea Donor Study. JAMA Ophthalmol. 2015;133:246–54. This multi-center study assessed the factors predictive of penetrating keraotplasty survival for treatment of Fuchs’ dystrophy and pseudophakic or aphakic corneal edema.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Quilendrino R, Hohn H, Tse WH, Chi H, Dapena I, Ham L, et al. Do we overestimate the endothelial cell “loss” after Descemet membrane endothelial keratoplasty. Curr Eye Res. 2013;38:260–5.

    Article  PubMed  Google Scholar 

  27. Price MO, Gorovoy M, Price FW, Benetz BA, Menegay HJ, Lass JH. Descemet’s stripping automated endothelial keratoplasty: three-year graft and endothelial cell survival compared with penetrating keratoplasty. Ophthalmology. 2013;120:246–51.

    Article  PubMed  Google Scholar 

  28. Dapena I, Ham L, Droutsas K, van Dijk K, Moutsouris K, Melles GR. Learning curve in Descemet’s membrane endothelial keratoplasty: first series of 135 consecutive cases. Ophthalmology. 2011;118:2147–54.

    Article  PubMed  Google Scholar 

  29. Gorovoy MS. DMEK complications. Cornea. 2014;33:101–4.

    Article  PubMed  Google Scholar 

  30. Rose-Nussbaumer J, Alloju S, Chamberlain W. Clinical outcomes of Descemet membrane endothelial keratoplasty during the surgeon learning curve versus Descemet stripping endothelial keratoplasty performed at the same time. J Clin Exp Ophthalmol 2016;7(5).pii:599.

  31. Phillips PM, Phillips LJ, Muthappan V, Maloney CM, Carver CN. Experienced DSAEK surgeon’s transition to DMEK: outcomes comparing the last 100 DSAEK surgeries with the first 100 DMEK surgeries exclusively using previously published techniques. Cornea. 2017;36:275–9.

    PubMed  Google Scholar 

  32. Debellemaniere G, Guilbert E, Courtin R, Panthier C, Sabatier P, Gatinel D, et al. Impact of surgical learning curve in Descemet membrane endothelial keratoplasty on visual acuity gain. Cornea. 2017;36:1–6.

    Article  PubMed  Google Scholar 

  33. Feng MT, Price MO, Miller JM, Price FW Jr. Air reinjection and endothelial cell density in Descemet membrane endothelial keratoplasty: five-year follow-up. J Cataract Refract Surg. 2014;40:1116–21.

    Article  PubMed  Google Scholar 

  34. Heinzelmann S, Bohringer D, Eberwein P, Reinhard T, Maier P. Outcomes of Descemet membrane endothelial keratoplasty, Descemet stripping automated endothelial keratoplasty and penetrating keratoplasty from a single centre study. Graefes Arch Clin Exp Ophthalmol. 2016;254:515–22.

    Article  PubMed  CAS  Google Scholar 

  35. Tourtas T, Laaser K, Bachmann BO, Cursiefen C, Kruse FE. Descemet membrane endothelial keratoplasty versus Descemet stripping automated endothelial keratoplasty. Am J Ophthalmol. 2012;153:1082–90.

    Article  PubMed  Google Scholar 

  36. Lee WB, Jacobs DS, Musch DC, Kaufman SC, Reinhart WJ, Shtein RM. Descemet’s stripping endothelial keratoplasty: safety and outcomes: a report by the American Academy of Ophthalmology. Ophthalmology. 2009;116:1818–30.

    Article  PubMed  Google Scholar 

  37. •• SX D, Lee WB, Hammersmith KM, Kuo AN, Li JY, Shen JF, et al. Descemet membrane endothelial keratoplasty: safety and outcomes: a report by the American Academy of Ophthalmology. Ophthalmology. 2018;125:295–310. Comprehensive review and assessment of DMEK.

    Article  Google Scholar 

  38. Gerber-Hollbach N, Baydoun L, Lopez EF, Frank LE, Dapena I, Liarakos VS, et al. Clinical outcome of rebubbling for graft detachment after Descemet membrane endothelial keratoplasty. Cornea. 2017;36:771–6.

    Article  PubMed  Google Scholar 

  39. Lass JH, Szczotka-Flynn LB, Ayala AR, Benetz BA, Gal RL, Aldave AJ, et al. Cornea preservation time study: methods and potential impact on the cornea donor pool in the United States. Cornea. 2015;34:601–8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Guell JL, Morral M, Gris O, Elies D, Manero F. Comparison of sulfur hexafluoride 20% versus air tamponade in Descemet membrane endothelial keratoplasty. Ophthalmology. 2015;122:1757–64.

    Article  PubMed  Google Scholar 

  41. Schaub F, Enders P, Snijders K, Schrittenlocher S, Siebelmann S, Heindl LM, et al. One-year outcome after DMEK comparing sulfur hexafluoride (SF6) 20% versus 100% air for anterior chamber tamponade. Br J Ophthalmol. 2017;101:902–8.

    Article  PubMed  Google Scholar 

  42. Chaurasia S, Price FW Jr, Gunderson L, Price MO. Descemet’s membrane endothelial keratoplasty: clinical results of single versus triple procedures (combined with cataract surgery). Ophthalmology. 2014;121:454–8.

    Article  PubMed  Google Scholar 

  43. Terry MA, Shamie N, Chen ES, Phillips PM, Shah AK, Hoar KL, et al. Endothelial keratoplasty for Fuchs’ dystrophy with cataract: complications and clinical results with the new triple procedure. Ophthalmology. 2009;116:631–9.

    Article  PubMed  Google Scholar 

  44. Price MO, Baig KM, Brubaker JW, Price FW Jr. Randomized, prospective comparison of precut versus surgeon-dissected grafts for Descemet stripping automated endothelial keratoplasty. Am J Ophthalmol. 2008;146:36–41.

    Article  PubMed  Google Scholar 

  45. Rose L, Briceno CA, Stark WJ, Gloria DG, Jun AS. Assessment of eye bank-prepared posterior lamellar corneal tissue for endothelial keratoplasty. Ophthalmology. 2008;115:279–86.

    Article  PubMed  Google Scholar 

  46. Palloura S, Colby K. Outcomes of Descemet stripping endothelial keratoplasty using eye bank-prepared preloaded grafts. Cornea. 2017;36:21–5.

    Article  Google Scholar 

  47. Tran KD, Dye PK, Odell K, Galloway J, Stoeger CG, Straiko MD, et al. Evaluation and quality assessment of prestripped, preloaded Descemet membrane endothelial keratoplasty grafts. Cornea. 2017;36:484–90.

    Article  PubMed  Google Scholar 

  48. Ruzza A, Parekh M, Ferrari S, Salvalaio G, Nahum Y, Bovone C, et al. Preloaded donor corneal lenticules in a new validated 3D printed smart storage glide for Descemet stripping automated endothelial keratoplasty. J Ophthalmol. 2015;99:1388–95.

    Google Scholar 

  49. Veldman BP, Dye PK, Holiman JD, Mayko ZM, Sales CS, Straiko MD, et al. The S-stamp in Descemet membrane endothelial keratoplasty safely eliminates upside-down graft implantation. Ophthalmology. 2016;123:161–4.

    Article  PubMed  Google Scholar 

  50. Anshu A, Price MO, Price FW. Risk of corneal transplant rejection significantly reduced with Descemet’s membrane endothelial keratoplasty. Ophthalmology. 2012;119:536–40.

    Article  PubMed  Google Scholar 

  51. • Hos D, Tuac O, Schaub F, Stanzel TP, Schrittenlocher S, Hellmich M, et al. Incidence and clinical course of immune reactions after Descemet membrane endothelial keratoplasty: retrospective analysis of 1000 consecutive eyes. Ophthalmology. 2017;124:512–8. This large single-center study confirmed that DMEK has a remarkably low rate of immunologic rejection.

    Article  PubMed  Google Scholar 

  52. Price MO, Price FW Jr, Kruse FE, Bachmann BO, Tourtas T. Randomized comparison of topical prednisolone acetate 1% versus fluorometholone 0.1% in the first year after descemet membrane endothelial keratoplasty. Cornea. 2014;33:880–6.

    Article  PubMed  Google Scholar 

  53. • Price MO, Feng MT, Scanameo A, Price FW Jr. Loteprednol etabonate 0.5% gel vs. prednisolone acetate 1% solution after Descemet membrane endothelial keratoplasty: prospective randomized trial. Cornea. 2015;34:853–8. This randomized study showed that topical corticosteroid strength can be reduced 1 month after DMEK to reduce the risk of intraocular pressure elevation without increasing the risk of immunologic graft rejection.

    Article  PubMed  Google Scholar 

  54. • Price MO, Scanameo A, Feng MT, Price FW Jr. Descemet’s membrane endothelial keratoplasty: risk of immunologic rejection episodes after discontinuing topical corticosteroids. Ophthalmology. 2016;123:1232–6. This study showed that continued once-daily use of a low-dose topical corticosteroid is protective against immunologic rejection episodes after DMEK.

    Article  PubMed  Google Scholar 

  55. Borderie VM, Boelle PY, Touzeau O, Allouch C, Boutboul S, Laroche L. Predicted long-term outcome of corneal transplantation. Ophthalmology. 2009;116:2354–60.

    Article  PubMed  Google Scholar 

  56. Anshu A, Price MO, Price FW. Descemet’s stripping endothelial keratoplasty: long-term graft survival and risk factors for failure in eyes with preexisting glaucoma. Ophthalmology. 2012;119:1982–7.

    Article  PubMed  Google Scholar 

  57. • Nahum Y, Mimouni M, Busin M. Risk factors predicting the need for graft exchange after Descemet stripping automated endothelial keratoplasty. Cornea. 2015;34:876–9. This study confirmed that prior trabeculectomy or aqueous shunt was a major risk factor for post-keratoplasty endothelial decompensation.

    Article  PubMed  Google Scholar 

  58. Aldave AJ, Chen JL, Zaman AS, Deng SX, Yu F. Outcomes after DSEK in 101 eyes with previous trabeculectomy and tube shunt implantation. Cornea. 2014;33:223–9.

    Article  PubMed  Google Scholar 

  59. • Kang JJ, Ritterband DC, Lai K, Liebmann JM, Seedor JA. Descemet stripping endothelial keratoplasty in eyes with previous glaucoma surgery. Cornea. 2016;35:1520–5. This study confirmed that the post-keratoplasty risk of endothelial decompensation was increased significantly in eyes with previous aqueous shunt implantation.

    Article  PubMed  Google Scholar 

  60. • Yagi-Yaguchi Y, Yamaguchi T, Higa K, Suzuki T, Yazu H, Aketa N, et al. Preoperative aqueous cytokine levels are associated with a rapid reduction in endothelial cells after penetrating keratoplasty. Am J Ophthalmol. 2017;181:166–73. This study showed that higher preoperative aqueous levels of certain cytokines were associated with increased post-keratoplasty endothelial cell loss.

    Article  PubMed  CAS  Google Scholar 

  61. • Yazu H, Yamaguchi T, Aketa N, Higa K, Suzuki T, Yagi-Yaguchi Y, et al. Preoperative aqueous cytokine levels are associated with endothelial cell loss after Descemet’s stripping automated endothelial keratoplasty. Invest Ophthalmol Vis Sci. 2018;59:612–20. This study showed that higher preoperative aqueous levels of certain cytokines were associated with increased post-keratoplasty endothelial cell loss.

    Article  PubMed  Google Scholar 

  62. • Feng MT, Price FW Jr, McKee Y, Price MO. Memantine-associated corneal endothelial dysfunction. JAMA Ophthalmol. 2015;133:1218–20. This study showed that post-keratoplasty endothelial dysfunction can be associated with recipient use of N -methyl- d -aspartate receptor antagonists for Alzheimer’s disease.

    Article  PubMed  Google Scholar 

  63. Koenig SB, McDermott ML, Simons KB. Nonimmunologic graft failure after Descemet’s stripping automated endothelial keratoplasty (DSAEK) for presumed amantadine-induced corneal edema. Eye Contact Lens. 2009;35:209–11.

    Article  PubMed  Google Scholar 

  64. Lagali N, Stenevi U, Claesson M, Fagerholm P, Hanson C, Weijdegard B. Survival of donor-derived cells in human corneal transplants. Invest Ophthalmol Vis Sci. 2009;50:2673–8.

    Article  PubMed  Google Scholar 

  65. Lavy I, Verdijk RM, Bruinsma M, Sleddens H, Oellerich S, Binder PS, et al. Sex chromosome analysis of postmortem corneal endothelium after sex-mismatch Descemet membrane endothelial keratoplasty. Cornea. 2017;36:11–6.

    Article  PubMed  Google Scholar 

  66. • Birbal RS, Parker J, Dirisamer M, Janicijevic A, Baydoun L, Dapena I, et al. Descemet membrane endothelial transfer: ultimate outcome. Cornea. 2018;37:141–4. This study showed that endothelial cell migration can result in central corneal clearance despite significant detachment of an endothelial keratoplasty graft, but that ultimately, the cornea decompensates and a regraft is required.

    Article  PubMed  Google Scholar 

  67. Gerber-Hollbach N, Parker J, Baydoun L, Liarakos V, Ham L, Dapena I, et al. Preliminary outcome of hemi-Descemet membrane endothelial keratoplasty for Fuchs endothelial dystrophy. Br J Ophthalmol. 2016;100:1564–8.

    Article  PubMed  Google Scholar 

  68. Zygoura V, Baydoun L, Ham L, Bourgonje VJA, van Dijk K, Lie JT, et al. Quarter-Descemet membrane endothelial keratoplasty (Quarter-DMEK) for Fuchs endothelial corneal dystrophy: 6 months clinical outcome. Br J Ophthalmol. 2018 ePub ahead of print; https://doi.org/10.1136/bjophthalmol-2017-311398.

  69. Gedde SJ, Schiffman JC, Feuer WJ, Herndon LW, Brandt JD, Budenz DL. Three-year follow-up of the tube versus trabeculectomy study. Am J Ophthalmol. 2009;148:670–84.

    Article  PubMed  Google Scholar 

  70. Anshu A, Price MO, Richardson MR, Segu ZM, Lai X, Yoder MC, et al. Alterations in the aqueous humor proteome in patients with a glaucoma shunt device. Mol Vis. 2011;17:1891–900.

    PubMed  PubMed Central  CAS  Google Scholar 

  71. • Rosenfeld C, Price MO, Lai X, Witzmann FA, Price FW Jr. Distinctive and pervasive alterations in aqueous humor protein composition following different types of glaucoma surgery. Mol Vis. 2015;25:911–8. This study showed that different types of glaucoma surgery produce distinctive and pervasive alterations in aqueous humor protein concentrations.

    Google Scholar 

  72. • Ishii N, Yamaguchi T, Yazu H, Satake Y, Yoshida A, Shimazaki J. Factors associated with graft survival and endothelial cell density after Descemet’s stripping automated endothelial keratoplasty. Sci Rpt. 2016;6:25276. This study showed that preexisting iris damage can significantly impact corneal endothelial survival.

    CAS  Google Scholar 

  73. • Price MO, Lisek M, Feng MT, Price FW Jr. Effect of donor and recipient diabetes status on Descemet membrane endothelial keratoplasty adherence and survival. Cornea. 2017;36:1184–8. This study found that recipient diabetes was associated with a higher rate of chronic post-keratoplasty endothelial cell loss.

    PubMed  Google Scholar 

  74. Lass JH, Benetz BA, Gal RL, Kollman C, Raghinaru D, Dontchev M, et al. Donor age and factors related to endothelial cell loss 10 years after penetrating keratoplasty: Specular Microscopy Ancillary Study. Ophthalmology. 2013;120:2428–35.

    Article  PubMed  Google Scholar 

  75. •• Lass JH, Benetz BA, Verdier DD, Szczotka-Flynn LB, Ayala AR, Liang W, et al. Corneal endothelial cell loss 3 years after successful Descemet stripping automated endothelial keratoplasty in the Cornea Preservation Time Study: a randomized clinical trial. JAMA Ophthalmol. 2017;135:1394–400. This randomized, multi-center study evaluated the effect of donor preservation time on cell loss after DSEK.

    Article  PubMed  Google Scholar 

  76. • Rodriguez-Calvo de Mora M, Groeneveld-van Beek EA, Frank LE, van der Wees J, Oellerich S, Bruinsma M, et al. Association between graft storage time and donor age with endothelial cell density and graft adherence after Descemet membrane endothelial keratoplasty. JAMA Ophthalmol. 2016;134:91–4. This study found that longer donor preservation time in culture medium was associated with increased cell loss after DMEK.

    Article  PubMed  Google Scholar 

  77. The Collaborative Corneal Transplantation Studies Research Group. The collaborative corneal transplantation studies (CCTS). Effectiveness of histocompatibility matching in high-risk corneal transplantation. Arch Ophthalmol. 1992;110:1392–403.

    Article  Google Scholar 

  78. Hopkinson CL, Romano V, Kaye RA, Steger B, Stewart RM, Tsagkataki M, et al. The influence of donor and recipient gender incompatibility on corneal transplant rejection and failure. Am J Transplant. 2017;17:210–7.

    Article  PubMed  CAS  Google Scholar 

  79. •• Price DA, Price MO, Kelley M, Price FW Jr. DMEK vs. DSEK: 5-year graft survival, endothelial cell loss and rejection episode rates, and the effect of donor sex-matching. Ophthalmology. 2018; in press. This study assessed outcomes of over 2000 endothelial keratoplasty procedures; the rejection episode rate was significantly lower with DMEK, but the 5-year graft survival rates were comparable with DMEK and DSEK. Neither donor sex nor donor/recipient sex matching significantly influenced EK outcomes.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne O. Price.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cornea

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Price, M.O., Lass, J.H. & Price, F.W. Clinical Factors for Early and Late Endothelial Cell Loss After Corneal Transplantation. Curr Ophthalmol Rep 6, 191–199 (2018). https://doi.org/10.1007/s40135-018-0179-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-018-0179-y

Keywords

Navigation