Skip to main content

Advertisement

Log in

New Technology and Current Understanding of Episcleral Venous Pressure

  • Diagnosis and Monitoring of Glaucoma (R Kuchtey, Section Editor)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To understand the current and new technology surrounding episcleral venous pressure (EVP).

Recent Findings

Episcleral venous pressure plays a vital role in calculating intraocular pressure based on the formula IOP = (Q − U)/c + EVP where Q is the aqueous flow rate, U is the pressure-insensitive uveoscleral outflow rate, c is the outflow facility, and EVP is episcleral venous pressure. Various methods for measuring EVP, including direct, indirect, and non-invasive methods, have been explored. These methods have great variability, with findings ranging between 5.1 and 11.4 mmHg. The effect of various medications on EVP has also been examined, and newer medications that aim to lower EVP are being developed.

Summary

Future studies and techniques are needed to develop more reliable and accurate measurements of EVP. With these improved diagnostics, we will be able to identify an individual’s EVP, which will allow for targeted therapy with medications or surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet. 2004;363(9422):1711–20.

    Article  PubMed  Google Scholar 

  2. Sultan M, Blondeau P. Episcleral venous pressure in younger and older subjects in the sitting and supine positions. J Glaucoma. 2003;12(4):370–3.

    Article  PubMed  Google Scholar 

  3. Toris CB, Yablonski ME, Wang YL, Camras CB. Aqueous humor dynamics in the aging human eye. Am J Ophthalmol. 1999;127(4):407–12.

    Article  PubMed  CAS  Google Scholar 

  4. Ascher KW. The aqueous veins. Physiologic importance of the visible elimination of intraocular fluid. Am J Ophthalmol. 1942;25:1174–209.

    Article  Google Scholar 

  5. Ashton N. Anatomical study of Schlemm’s canal and aqueous veins by means of neoprene casts. Part I. Aqueous veins. Br J Ophthalmol. 1951;35:291–303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ashton N. Anatomical study of Schlemm’s canal and aqueous veins by means of neoprene casts. Part II. Aqueous veins. Br J Ophthalmol. 1952;36:265–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Ashton N, Smith R. Anatomical study of Schlemm’s canal and aqueous veins by means of neoprene casts. III. Arterial relations of Schlemm’s canal. Br J Ophthalmol. 1953;37:577–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Gaasterland DE, Jocson VL, Sears ML. Channels of aqueous outflow and related blood vessels. Episcleral arteriovenous anastomoses in the rhesus monkey eye (Macaca mulatta). Arch Ophthalmol. 1970;84:770–5.

    Article  PubMed  CAS  Google Scholar 

  9. Selbach JM, Schonfelder U, Funk RH. Arteriovenous anastomoses of the episcleral vasculature in the rabbit and rat eye. J Glaucoma. 1998;7(1):50–7.

    Article  PubMed  CAS  Google Scholar 

  10. Selbach JM, Rohen JW, Steuhl KP, Lutjen-Drecoll E. Angioarchitecture and innervation of the primate anterior episclera. Curr Eye Res. 2005;30(5):337–44.

    Article  PubMed  Google Scholar 

  11. Funk RH, Gehr J, Rohen JW. Short-term hemodynamic changes in episcleral arteriovenous anastomoses correlate with venous pressure and IOP changes in the albino rabbit. Curr Eye Res. 1996;15(1):87–93.

    Article  PubMed  CAS  Google Scholar 

  12. Zamora DO, Kiel JW. Episcleral venous pressure responses to topical nitroprusside and N-nitro-L-arginine methyl ester. Invest Ophthalmol Vis Sci. 2010;51(3):1614–20.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Brubaker RF. Determination of episcleral venous pressure in the eye. A comparison of three methods. Arch Ophthalmol. 1967;77(1):110–4.

    Article  PubMed  CAS  Google Scholar 

  14. Gaasterland DE, Pederson JE. Episcleral venous pressure: a comparison of invasive and noninvasive measurements. Invest Ophthalmol Vis Sci. 1983;24(10):1417–22.

    PubMed  CAS  Google Scholar 

  15. Linner E. Measurement of the pressure in Schlemm’s canal and in the anterior chamber of the human eye. Experientia. 1949;5(11):451–2.

    Article  PubMed  CAS  Google Scholar 

  16. Zamora DO, Kiel JW. Topical proparacaine and episcleral venous pressure in the rabbit. Invest Ophthalmol Vis Sci. 2009;50(6):2949–52.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Aihara M, Lindsey JD, Weinreb RN. Reduction of intraocular pressure in mouse eyes treated with latanoprost. Invest Ophthalmol Vis Sci. 2002;43(1):146–50.

    PubMed  Google Scholar 

  18. Aihara M, Lindsey JD, Weinreb RN. Episcleral venous pressure of mouse eye and effect of body position. Curr Eye Res. 2003;27(6):355–62.

    Article  PubMed  Google Scholar 

  19. Phelps CD, Armaly MF. Measurement of episcleral venous pressure. Am J Ophthalmol. 1978;85(1):35–42.

    Article  PubMed  CAS  Google Scholar 

  20. Weigelin E, Lohlein H. Measurements of the blood pressure of the episcleral vessels of the eye in healthy persons. Albrecht Von Graefes Arch Ophthalmol. 1952;153(3–4):202–13.

    Article  PubMed  CAS  Google Scholar 

  21. Zeimer RC, Gieser DK, Wilensky JT, Noth JM, Mori MM, Odunukwe EE. A practical venomanometer. Measurement of episcleral venous pressure and assessment of the normal range. Arch Ophthalmol. 1983;101(9):1447–9.

    Article  PubMed  CAS  Google Scholar 

  22. Linner E, Rickenbach C, Werner H. Comparative measurements of the pressure in the aqueous veins and the conjunctival veins using different methods. Acta Ophthalmol. 1950;28(4):469–78.

    Article  CAS  Google Scholar 

  23. Podos SM, Minas TF, Macri FJ. A new instrument to measure episcleral venous pressure. Comparison of normal eyes and eyes with primary open-angle glaucoma. Arch Ophthalmol. 1968;80(2):209–13.

    Article  PubMed  CAS  Google Scholar 

  24. Krakau CE, Widakowich J, Wilke K. Measurements of the episcleral venous pressure by means of an air jet. Acta Ophthalmol. 1973;51(2):185–96.

    Article  CAS  Google Scholar 

  25. • Sit AJ, Ekdawi NS, Malihi M, McLaren JW. A novel method for computerized measurement of episcleral venous pressure in humans. Exp Eye Res. 2011;92(6):537–44. This study highlights the most sophisticated, non-invasive method for measuring EVP.

    Article  PubMed  CAS  Google Scholar 

  26. Talusan ED, Schwartz B. Episcleral venous pressure. Differences between normal, ocular hypertensive, and primary open angle glaucomas. Arch Ophthalmol. 1981;99(5):824–8.

    Article  PubMed  CAS  Google Scholar 

  27. Selbach JM, Posielek K, Steuhl KP, Kremmer S. Episcleral venous pressure in untreated primary open-angle and normal-tension glaucoma. Ophthalmologica. 2005;219(6):357–61.

    Article  PubMed  Google Scholar 

  28. Rhee DJ, Gupta M, Moncavage MB, Moster ML, Moster MR. Idiopathic elevated episcleral venous pressure and open-angle glaucoma. Br J Ophthalmol. 2009;93(2):231–4.

    Article  PubMed  CAS  Google Scholar 

  29. Linder BJ, Trick GL, Wolf ML. Altering body position affects intraocular pressure and visual function. Invest Ophthalmol Vis Sci. 1988;29:1492–7.

    PubMed  CAS  Google Scholar 

  30. Malihi M, Sit AJ. Effect of head and body position on intraocular pressure. Ophthalmology. 2012;119(5):987–91.

    Article  PubMed  Google Scholar 

  31. Buys YM, Alasbali T, Jin YP, Smith M, Gouws P, Geffen N, et al. Effect of sleeping in a head-up position on intraocular pressure in patients with glaucoma. Ophthalmology. 2010;117(7):1348–51.

    Article  PubMed  Google Scholar 

  32. Friberg TR, Sanborn G, Weinreb RN. Intraocular and episcleral venous pressure increase during inverted posture. Am J Ophthalmol. 1987;103(4):523–6.

    Article  PubMed  CAS  Google Scholar 

  33. Arora N, McLaren JW, Sit AJ. Variations of episcleral venous pressure with body positions in healthy subjects. Invest Ophthalmol Vis Sci. 2012;53:1988.

    Google Scholar 

  34. Blondeau P, Tétrault JP, Papamarkakis C. Diurnal variation of episcleral venous pressure in healthy patients: a pilot study. J Glaucoma. 2001;10(1):18–24.

    Article  PubMed  CAS  Google Scholar 

  35. Gaasterland D, Kupfer C, Milton R, Ross K, McCain L, MacLellan H. Studies of aqueous humour dynamics in man. VI. Effect of age upon parameters of intraocular pressure in normal human eyes. Exp Eye Res. 1978;26(6):651–6.

    Article  PubMed  CAS  Google Scholar 

  36. Gaasterland D, Kupfer C, Ross K. Studies of aqueous humor dynamics in man. IV. Effects of pilocarpine upon measurements in young normal volunteers. Investig Ophthalmol. 1975;14(11):848–53.

    CAS  Google Scholar 

  37. Schenker HI, Yablonski ME, Podos SM, Linder L. Fluorophotometric study of epinephrine and timolol in human subjects. Arch Ophthalmol. 1981;99(7):1212–6.

    Article  PubMed  CAS  Google Scholar 

  38. Yablonski ME, Zimmerman TJ, Waltman SR, Becker B. A fluorophotometric study of the effect of topical timolol on aqueous humor dynamics. Exp Eye Res. 1978;27(2):135–42.

    Article  PubMed  CAS  Google Scholar 

  39. Yablonski ME, Novack GD, Burke PJ, Cook DJ, Harmon G. The effect of levobunolol on aqueous humor dynamics. Exp Eye Res. 1987;44(1):49–54.

    Article  PubMed  CAS  Google Scholar 

  40. Kupfer C, Gaasterland D, Ross K. Studies of aqueous humor dynamics in man. II. Measurements in young normal subjects using acetazolamide and L-epinephrine. Investig Ophthalmol. 1971;10(7):523–33.

    CAS  Google Scholar 

  41. Sponsel WE, Mensah J, Kiel JW, Remky A, Trigo Y, Baca W, et al. Effects of latanoprost and timolol-XE on hydrodynamics in the normal eye. Am J Ophthalmol. 2000;130(2):151–9.

    Article  PubMed  CAS  Google Scholar 

  42. Toris CB, Zhan G, Camras CB. Increase in outflow facility with unoprostone treatment in ocular hypertensive patients. Arch Ophthalmol. 2004;122(12):1782–7.

    Article  PubMed  Google Scholar 

  43. Toris CB, Zhan G, Fan S, Dickerson JE, Landry TA, Bergamini MVW, et al. Effects of travoprost on aqueous humor dynamics in patients with elevated intraocular pressure. J Glaucoma. 2007;16(2):189–95.

    Article  PubMed  Google Scholar 

  44. Toris CB, Tafoya ME, Camras CB, Yablonski ME. Effects of apraclonidine on aqueous humor dynamics in human eyes. Ophthalmology. 1995;102(3):456–61.

    Article  PubMed  CAS  Google Scholar 

  45. Reitsamer HA, Posey M, Kiel JW. Effects of a topical a2 adrenergic agonist on ciliary blood flow and aqueous production in rabbits. Exp Eye Res. 2006;82(3):405–15.

    Article  PubMed  CAS  Google Scholar 

  46. Abreu MM, Kim YY, Shin DH, Netland PA. Topical verapamil and episcleral venous pressure. Ophthalmology. 1998;105(12):2251–5.

    Article  PubMed  CAS  Google Scholar 

  47. Malihi M, McLaren JW, Sit AJ. Effect of topical anesthesia on episcleral venous pressure in normal human subjects. Invest Ophthalmol Vis Sci. 2015;56(5):2968–70.

    Article  PubMed  CAS  Google Scholar 

  48. Rao PV, Deng PF, Kumar J, Epstein DL. Modulation of aqueous humor outflow facility by the rho kinase-specific inhibitor Y-27632. Invest Ophthalmol Vis Sci. 2001;42:1029–37.

    PubMed  CAS  Google Scholar 

  49. Pattabiraman PP, Epstein DL, Rao PV. Regulation of adherens junctions in trabecular meshwork cells by Rac GTPase and their influence on intraocular pressure. J Ocul Biol. 2013;1:0002.

    PubMed  PubMed Central  Google Scholar 

  50. Pattabiraman PP, Maddala R, Rao PV. Regulation of plasticity and fibrogenic activity of trabecular meshwork cells by rho GTPase signaling. J Cell Physiol. 2014;229:927–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Honjo M, Inatani M, Kido N, Sawamura T, Yue BY, Honda Y, et al. Effects of protein kinase inhibitor, HA1077, on intraocular pressure and outflow facility in rabbit eyes. Arch Ophthalmol. 2001;119:1171–8.

    Article  PubMed  CAS  Google Scholar 

  52. Honjo M, Tanihara H, Inatani M, Kido N, Sawamura T, Yue BY, et al. Effects of rho-associated protein kinase inhibitor Y-27632 on intraocular pressure and outflow facility. Invest Ophthalmol Vis Sci. 2001;42:137–44.

    PubMed  CAS  Google Scholar 

  53. Yang C-YC, Liu Y, Lu Z, Ren R, Gong H. Effects of Y27632 on aqueous humor outflow facility with changes in hydrodynamic pattern and morphology in human eyes. Invest Ophthalmol Vis Sci. 2013;54:5859–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Kiel JW, Kopczynski CC. Effect of AR-13324 on episcleral venous pressure in Dutch belted rabbits. J Ocul Pharmacol Ther. 2015;31(3):146–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. •• Bacharach J, Dubiner HB, Levy B, Kopczynski CC, Novack GD, AR-13324-CS202 Study Group. Double-masked, randomized dose-response study of AR-13324 versus latanoprost in patients with elevated intraocular pressure. Ophthalmology. 2015;122:302–7. This study demonstrated a novel mechanism of action that showed significant IOP lowering. It has been nearly 20 years since a novel mechanism of action has been introduced in the glaucoma field.

    Article  PubMed  Google Scholar 

  56. Neuhann TH. Trabecular micro-bypass stent implantation during small-incision cataract surgery for open-angle glaucoma or ocular hypertension: long-term results. J Cataract Refract Surg. 2015;41(12):2664–71.

    Article  PubMed  Google Scholar 

  57. Fellman RL, Grover DS. Episcleral venous fluid wave: intraoperative evidence for patency of the conventional outflow system. J Glaucoma. 2014;23(6):347–50.

    Article  PubMed  Google Scholar 

  58. Anderson DR, Grant WM. The influence of position on intraocular pressure. Investig Ophthalmol. 1973;12(3):204–12.

    CAS  Google Scholar 

  59. Baskaran M, Raman K, Ramani KK, Roy J, Vijaya L, Badrinath SS. Intraocular pressure changes and ocular biometry during Sirsasana (headstand posture) in yoga practitioners. Ophthalmology. 2006;113(8):1327–32.

    Article  PubMed  Google Scholar 

  60. Carlson KH, McLaren JW, Topper JE, Brubaker RF. Effect of body position on intraocular pressure and aqueous flow. Invest Ophthalmol Vis Sci. 1987;28(8):1346–52.

    PubMed  CAS  Google Scholar 

  61. Gallardo MJ, Aggarwal N, Cavanagh HD, Whitson JT. Progression of glaucoma associated with the Sirsasana (headstand) yoga posture. Adv Ther. 2006;23(6):921–5.

    Article  PubMed  Google Scholar 

  62. Hirooka K, Shiraga F. Relationship between postural change of the intraocular pressure and visual field loss in primary open-angle glaucoma. J Glaucoma. 2003;12(4):379–82.

    Article  PubMed  Google Scholar 

  63. Jonas JB. Intraocular pressure during headstand. Ophthalmology. 2007;114(9):1791. author reply 1791

    Article  PubMed  Google Scholar 

  64. Magnaes B. Body position and cerebrospinal fluid pressure. Part 2: clinical studies on orthostatic pressure and the hydrostatic indifferent point. J Neurosurg. 1976;44(6):698–705.

    Article  PubMed  CAS  Google Scholar 

  65. Tarkkanen A, Leikola J. Postural variations of the intraocular pressure as measured with the Mackay-Marg tonometer. Acta Ophthalmol. 1967;45(4):569–75.

    Article  CAS  Google Scholar 

  66. Weinreb RN, Cook J, Friberg TR. Effect of inverted body position on intraocular pressure. Am J Ophthalmol. 1984;98(6):784–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Greenwood.

Ethics declarations

Conflict of Interest

John Berdahl reports personal fees and other from Alcon, personal fees and other from Allergan, personal fees and other from Bausch and Lomb, personal fees from Envisia, personal fees and other from Equinox, personal fees and other from Glaukos, and personal fees from New World Medical, outside the submitted work. Mitch Ibach reports personal fees and other from Glaukos, personal fees and other from Allergan, and personal fees and other from Equinox, outside the submitted work. Michael Greenwood has personal fees and other from Alcon, personal fees from Envisia, personal fees and other from Equinox, personal fees and other from Glaukos, and personal fees from New World Medical, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Diagnosis and Monitoring of Glaucoma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greenwood, M., Berdahl, J. & Ibach, M. New Technology and Current Understanding of Episcleral Venous Pressure. Curr Ophthalmol Rep 6, 86–92 (2018). https://doi.org/10.1007/s40135-018-0168-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-018-0168-1

Keywords

Navigation