Skip to main content

Advertisement

Log in

Current Development in Genome Wide Association Studies of Glaucoma

  • Diagnosis and Monitoring of Glaucoma (R Kuchtey, Section Editor)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Purpose of review

Glaucoma is the leading and most common cause of irreversible visual impairment and blindness. Despite its heterogeneous causes, there is strong evidence arguing for a hereditable basis underlying glaucoma pathogenesis. We aim to discuss in this review genetic determinants underlying glaucoma which have been discovered using genome-wide association studies and the biological insights gained from them.

Recent findings

More than 20 genetic loci have been discovered by GWAS of increasing sample size and statistical power for the different forms of glaucoma. These findings definitively implicate the involvement of previously undescribed pathways in the disease process of glaucomatous optic nerve damage.

Summary

Collectively, data from these large scale GWAS have illuminated the disease biology of glaucoma and has helped to focus future research towards translating biological insights to biological mechanisms and development of effective drugs and therapies to prevent glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Quigley HA. Number of people with glaucoma worldwide. Br J Ophthalmol. 1996;80(5):389–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3):262–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121:2081–90.

    Article  PubMed  Google Scholar 

  4. Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res. 2005;24(1):39–73.

    Article  PubMed  Google Scholar 

  5. Fechtner RD, Weinreb RN. Mechanisms of optic nerve damage in primary open angle glaucoma. Surv Ophthalmol. 1994;39(1):23–42.

    Article  PubMed  CAS  Google Scholar 

  6. Quigley HA, Addicks EM, Green WR, Maumenee AE. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol. 1981;99(4):635–49.

    Article  PubMed  CAS  Google Scholar 

  7. Allingham RR, Liu Y, Rhee DJ. The genetics of primary open-angle glaucoma: a review. Exp Eye Res. 2009;88(4):837–44.

    Article  PubMed  CAS  Google Scholar 

  8. Sheffield VC, Stone EM, Alward WL, Drack AV, Johnson AT, Streb LM, et al. Genetic linkage of familial open angle glaucoma to chromosome 1q21-q31. Nat Genet. 1993;4(1):47–50.

    Article  PubMed  CAS  Google Scholar 

  9. Stone EM, Fingert JH, Alward WL, Nguyen TD, Polansky JR, Sunden SL, et al. Identification of a gene that causes primary open angle glaucoma. Science. 1997;275(5300):668–70.

    Article  PubMed  CAS  Google Scholar 

  10. Fingert JH, Heon E, Liebmann JM, Yamamoto T, Craig JE, Rait J, et al. Analysis of myocilin mutations in 1703 glaucoma patients from five different populations. Hum Mol Genet. 1999;8(5):899–905.

    Article  PubMed  CAS  Google Scholar 

  11. Rezaie T, Child A, Hitchings R, Brice G, Miller L, Coca-Prados M, et al. Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science. 2002;295(5557):1077–9.

    Article  PubMed  CAS  Google Scholar 

  12. Sarfarazi M, Child A, Stoilova D, Brice G, Desai T, Trifan OC, et al. Localization of the fourth locus (GLC1E) for adult-onset primary open-angle glaucoma to the 10p15-p14 region. Am J Hum Genet. 1998;62(3):641–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Monemi S, Spaeth G, DaSilva A, Popinchalk S, Ilitchev E, Liebmann J, et al. Identification of a novel adult-onset primary open-angle glaucoma (POAG) gene on 5q22.1. Hum Mol Genet. 2005;14(6):725–33.

    Article  PubMed  CAS  Google Scholar 

  14. Fingert JH, Robin AL, Stone JL, Roos BR, Davis LK, Scheetz TE, et al. Copy number variations on chromosome 12q14 in patients with normal tension glaucoma. Hum Mol Genet. 2011;20(12):2482–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Morton S, Hesson L, Peggie M, Cohen P. Enhanced binding of TBK1 by an optineurin mutant that causes a familial form of primary open angle glaucoma. FEBS Lett. 2008;582(6):997–1002.

    Article  PubMed  CAS  Google Scholar 

  16. Sarfarazi M. Recent advances in molecular genetics of glaucomas. Hum Mol Genet. 1997;6(10):1667–77.

    Article  PubMed  CAS  Google Scholar 

  17. Fingert JH. Primary open-angle glaucoma genes. Eye (London, England). 2011;25(5):587–95.

    Article  CAS  Google Scholar 

  18. Wright C, Tawfik MA, Waisbourd M, Katz LJ. Primary angle-closure glaucoma: an update. Acta Ophthalmol. 2016;94(3):217–25.

    Article  PubMed  Google Scholar 

  19. Amerasinghe N, Zhang J, Thalamuthu A, He M, Vithana EN, Viswanathan A, et al. The heritability and sibling risk of angle closure in Asians. Ophthalmology. 2011;118(3):480–5.

    Article  PubMed  Google Scholar 

  20. Awadalla MS, Burdon KP, Kuot A, Hewitt AW, Craig JE. Matrix metalloproteinase-9 genetic variation and primary angle closure glaucoma in a Caucasian population. Mol Vis. 2011;17:1420–4.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Micheal S, Qamar R, Akhtar F, Khan MI, Khan WA, Ahmed A. MTHFR gene C677T and A1298C polymorphisms and homocysteine levels in primary open angle and primary closed angle glaucoma. Mol Vis. 2009;15:2268–78.

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Micheal S, Yousaf S, Khan MI, Akhtar F, Islam F, Khan WA, et al. Polymorphisms in matrix metalloproteinases MMP1 and MMP9 are associated with primary open-angle and angle closure glaucoma in a Pakistani population. Mol Vis. 2013;19:441–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Schlotzer-Schrehardt U, Naumann GO. Ocular and systemic pseudoexfoliation syndrome. Am J Ophthalmol. 2006;141(5):921–37.

    Article  PubMed  Google Scholar 

  24. Ritch R, Schlotzer-Schrehardt U. Exfoliation syndrome. Surv Ophthalmol. 2001;45(4):265–315.

    Article  PubMed  CAS  Google Scholar 

  25. Forsius H. Exfoliation syndrome in various ethnic populations. Acta Ophthalmol Suppl. 1988;184:71–85.

    PubMed  CAS  Google Scholar 

  26. Whigham BT, Allingham RR. Review: the role of LOXL1 in exfoliation syndrome/glaucoma. Saudi J Ophthalmol. 2011;25(4):347–52.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Allingham RR, Loftsdottir M, Gottfredsdottir MS, Thorgeirsson E, Jonasson F, Sverisson T, et al. Pseudoexfoliation syndrome in Icelandic families. Br J Ophthalmol. 2001;85(6):702–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Orr AC, Robitaille JM, Price PA, Hamilton JR, Falvey DM, De Saint-Sardos AG, et al. Exfoliation syndrome: clinical and genetic features. Ophthalmic Genet. 2001;22(3):171–85.

    Article  PubMed  CAS  Google Scholar 

  29. Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA. Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet. 2004;74(1):106–20.

    Article  PubMed  CAS  Google Scholar 

  30. International HapMap C. A haplotype map of the human genome. Nature. 2005;437(7063):1299–320.

    Article  CAS  Google Scholar 

  31. Cardon LR, Bell JI. Association study designs for complex diseases. Nature reviews. 2001;2(2):91–9.

    Article  PubMed  CAS  Google Scholar 

  32. Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG, et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature. 2007;447(7148):1087–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, et al. Complement factor H polymorphism in age-related macular degeneration. Science. 2005;308(5720):385–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Aung T, Khor CC. Glaucoma genetics: recent advances and future directions. Asia Pac J Ophthalmol (Phila). 2016;5(4):256–9.

    Article  Google Scholar 

  35. Sakurada Y, Mabuchi F. Genetic risk factors for glaucoma and exfoliation syndrome identified by genome-wide association studies. Curr Neuropharmacol. 2017;15

  36. Thorleifsson G, Walters GB, Hewitt AW, Masson G, Helgason A, DeWan A, et al. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma. Nat Genet. 2010;42(10):906–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Burdon KP, Macgregor S, Hewitt AW, Sharma S, Chidlow G, Mills RA, et al. Genome-wide association study identifies susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1. Nat Genet. 2011;43(6):574–8.

    Article  PubMed  CAS  Google Scholar 

  38. Nakano M, Ikeda Y, Tokuda Y, Fuwa M, Omi N, Ueno M, et al. Common variants in CDKN2B-AS1 associated with optic-nerve vulnerability of glaucoma identified by genome-wide association studies in Japanese. PLoS One. 2012;7(3):e33389.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wiggs JL, Yaspan BL, Hauser MA, Kang JH, Allingham RR, Olson LM, et al. Common variants at 9p21 and 8q22 are associated with increased susceptibility to optic nerve degeneration in glaucoma. PLoS Genet. 2012;8(4):e1002654.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. • Gharahkhani P, Burdon KP, Fogarty R, Sharma S, Hewitt AW, Martin S, et al. Common variants near ABCA1, AFAP1 and GMDS confer risk of primary open-angle glaucoma. Nature genetics. 2014;46(10):1120–1125. Together with references 41 and 48, these studies clearly implicate a link between increased intraocular pressure, ABCA1, increased primary open angle glaucoma in general, and increased risk of high pressure glaucoma in particular.

  41. • Chen Y, Lin Y, Vithana EN, Jia L, Zuo X, Wong TY, et al. Common variants near ABCA1 and in PMM2 are associated with primary open-angle glaucoma. Nature genetics. 2014;46(10):1115–9. Together with references 42 and 48, these studies clearly implicate a link between increased intraocular pressure, ABCA1, increased primary open angle glaucoma in general, and increased risk of high pressure glaucoma in particular.

  42. Li Z, Allingham RR, Nakano M, Jia L, Chen Y, Ikeda Y, et al. A common variant near TGFBR3 is associated with primary open angle glaucoma. Hum Mol Genet. 2015;24(13):3880–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. •• Bailey JN, Loomis SJ, Kang JH, Allingham RR, Gharahkhani P, Khor CC, et al. Genome-wide association analysis identifies TXNRD2, ATXN2 and FOXC1 as susceptibility loci for primary open-angle glaucoma. Nature Genetics. 2016;48(2):189–94. This is the largest and definitive GWAS study on primary open angle glaucoma to date.

    Article  PubMed  CAS  Google Scholar 

  44. Springelkamp H, Iglesias AI, Mishra A, Hohn R, Wojciechowski R, Khawaja AP, et al. New insights into the genetics of primary open-angle glaucoma based on meta-analyses of intraocular pressure and optic disc characteristics. Hum Mol Genet. 2017;26(2):438–53.

    PubMed  CAS  PubMed Central  Google Scholar 

  45. Vithana EN, Khor CC, Qiao C, Nongpiur ME, George R, Chen LJ, et al. Genome-wide association analyses identify three new susceptibility loci for primary angle closure glaucoma. Nat Genet. 2012;44(10):1142–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Khor CC, Do T, Jia H, Nakano M, George R, Abu-Amero K, et al. Genome-wide association study identifies five new susceptibility loci for primary angle closure glaucoma. Nat Genet. 2016;48(5):556–62.

    Article  PubMed  CAS  Google Scholar 

  47. Thorleifsson G, Magnusson KP, Sulem P, Walters GB, Gudbjartsson DF, Stefansson H, et al. Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science. 2007;317(5843):1397–400.

    Article  PubMed  CAS  Google Scholar 

  48. Aung T, Ozaki M, Mizoguchi T, Allingham RR, Li Z, Haripriya A, et al. A common variant mapping to CACNA1A is associated with susceptibility to exfoliation syndrome. Nat Genet. 2015;47(4):387–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Aung T, Ozaki M, Lee MC, Schlotzer-Schrehardt U, Thorleifsson G, Mizoguchi T, et al. Genetic association study of exfoliation syndrome identifies a protective rare variant at LOXL1 and five new susceptibility loci. Nat Genet. 2017;49(7):993–1004.

    Article  PubMed  CAS  Google Scholar 

  50. Wiggs JL, Kang JH, Yaspan BL, Mirel DB, Laurie C, Crenshaw A, et al. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma in Caucasians from the USA. Hum Mol Genet. 2011;20(23):4707–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Ramdas WD, van Koolwijk LM, Ikram MK, Jansonius NM, de Jong PT, Bergen AA, et al. A genome-wide association study of optic disc parameters. PLoS Genet. 2010;6(6):e1000978.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Khor CC, Ramdas WD, Vithana EN, Cornes BK, Sim X, Tay WT, et al. Genome-wide association studies in Asians confirm the involvement of ATOH7 and TGFBR3, and further identify CARD10 as a novel locus influencing optic disc area. Hum Mol Genet. 2011;20(9):1864–72.

    Article  PubMed  CAS  Google Scholar 

  53. Springelkamp H, Iglesias AI, Cuellar-Partida G, Amin N, Burdon KP, van Leeuwen EM, et al. ARHGEF12 influences the risk of glaucoma by increasing intraocular pressure. Hum Mol Genet. 2015;24(9):2689–99.

    Article  PubMed  CAS  Google Scholar 

  54. • Hysi PG, Cheng CY, Springelkamp H, Macgregor S, Bailey JNC, Wojciechowski R, et al. Genome-wide analysis of multi-ancestry cohorts identifies new loci influencing intraocular pressure and susceptibility to glaucoma. Nature Genetics. 2014;46(10):1126–30. Together with references 41 and 42, these studies clearly implicate a link between increased intraocular pressure, ABCA1, increased primary open angle glaucoma in general, and increased risk of high pressure glaucoma in particular.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Chen Y, Chen X, Wang L, Hughes G, Qian S, Sun X. Extended association study of PLEKHA7 and COL11A1 with primary angle closure glaucoma in a Han Chinese population. Invest Ophthalmol Vis Sci. 2014;55(6):3797–802.

    Article  PubMed  CAS  Google Scholar 

  56. Duvesh R, Verma A, Venkatesh R, Kavitha S, Ramulu PY, Wojciechowski R, et al. Association study in a South Indian population supports rs1015213 as a risk factor for primary angle closure. Invest Ophthalmol Vis Sci. 2013;54(8):5624–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Awadalla MS, Thapa SS, Hewitt AW, Burdon KP, Craig JE. Association of genetic variants with primary angle closure glaucoma in two different populations. PLoS One. 2013;8(6):e67903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Day AC, Luben R, Khawaja AP, Low S, Hayat S, Dalzell N, et al. Genotype-phenotype analysis of SNPs associated with primary angle closure glaucoma (rs1015213, rs3753841 and rs11024102) and ocular biometry in the EPIC-Norfolk Eye Study. Br J Ophthalmol. 2013;97(6):704–7.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nongpiur ME, Wei X, Xu L, Perera SA, Wu RY, Zheng Y, et al. Lack of association between primary angle-closure glaucoma susceptibility loci and the ocular biometric parameters anterior chamber depth and axial length. Invest Ophthalmol Vis Sci. 2013;54(8):5824–8.

    Article  PubMed  Google Scholar 

  60. Wei X, Nongpiur ME, de Leon MS, Baskaran M, Perera SA, How AC, et al. Genotype-phenotype correlation analysis for three primary angle closure glaucoma-associated genetic polymorphisms. Invest Ophthalmol Vis Sci. 2014;55(2):1143–8.

    Article  PubMed  CAS  Google Scholar 

  61. Pasutto F, Zenkel M, Hoja U, Berner D, Uebe S, Ferrazzi F, et al. Pseudoexfoliation syndrome-associated genetic variants affect transcription factor binding and alternative splicing of LOXL1. Nat Commun. 2017;8:15466.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Hauser MA, Aboobakar IF, Liu Y, Miura S, Whigham BT, Challa P, et al. Genetic variants and cellular stressors associated with exfoliation syndrome modulate promoter activity of a lncRNA within the LOXL1 locus. Hum Mol Genet. 2015;24(22):6552–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Wiggs JL, Pasquale LR. Expression and regulation of LOXL1 and elastin-related genes in eyes with exfoliation syndrome. J Glaucoma. 2014;23(8 Suppl 1):S62–3.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Majithia AR, Tsuda B, Agostini M, Gnanapradeepan K, Rice R, Peloso G, et al. Prospective functional classification of all possible missense variants in PPARG. Nat Genet. 2016;48(12):1570–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Majithia AR, Flannick J, Shahinian P, Guo M, Bray MA, Fontanillas P, et al. Rare variants in PPARG with decreased activity in adipocyte differentiation are associated with increased risk of type 2 diabetes. Proc Natl Acad Sci U S A. 2014;111(36):13127–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Flannick J, Thorleifsson G, Beer NL, Jacobs SB, Grarup N, Burtt NP, et al. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat Genet. 2014;46(4):357–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Marigorta UM, Denson LA, Hyams JS, Mondal K, Prince J, Walters TD, et al. Transcriptional risk scores link GWAS to eQTLs and predict complications in Crohn's disease. Nat Genet. 2017;49(10):1517–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Brown AA, Vinuela A, Delaneau O, Spector TD, Small KS, Dermitzakis ET. Predicting causal variants affecting expression by using whole-genome sequencing and RNA-seq from multiple human tissues. Nat Genet. 2017;49:1747–51.

    Article  PubMed  CAS  Google Scholar 

  69. Ongen H, Brown AA, Delaneau O, Panousis NI, Nica AC, Consortium GT, et al. Estimating the causal tissues for complex traits and diseases. Nat Genet. 2017;49:1676–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Diagnosis and Monitoring of Glaucoma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Khor, C.C. Current Development in Genome Wide Association Studies of Glaucoma. Curr Ophthalmol Rep 6, 79–85 (2018). https://doi.org/10.1007/s40135-018-0167-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-018-0167-2

Keywords

Navigation