Skip to main content

Advertisement

Log in

Diagnosis and Monitoring of Low-Tension Glaucoma

  • Diagnosis and Monitoring of Glaucoma (R Kuchtey, Section Editor)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this review is to discuss current ideas on the definition, pathophysiology, diagnosis, and management of low-tension glaucoma (LTG).

Recent Findings

While previously considered a distinct entity, LTG may be a continuation of primary open angle glaucoma with intraocular pressures (IOPs) within the statistical range of “normal”. Vascular dynamics, sleep apnea, and intracranial pressure may play a role in patients with LTG.

Summary

LTG remains a diagnosis of exclusion. A thorough medical history and possible blood work-up and neuroimaging may help exclude nutritional deficiencies, toxicities, and intracranial masses. Vasculature dysregulation may play a role in LTG and account for its association with certain systemic conditions. IOP lowering remains the mainstay treatment of LTG, with caution advised for topical beta-blocker medications. Non-IOP-lowering therapy, such as treating underlying systemic conditions potentially affecting ocular blood flow (e.g. hypotension, anemia, sleep apnea) and nutritional supplements (Ginkgo biloba and resveratrol), may be beneficial and are currently being studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •Of importance ••Of major importance

  1. American Academy of Ophthalmology, editor. Glaucoma. 2012th–3rd ed. San Francisco, Calif; 2012. 254 p. (Basic and clinical science course).

  2. Kingman S. Glaucoma is second leading cause of blindness globally. Bull World Health Organ. 2004;82(11):887–8.

    PubMed  PubMed Central  Google Scholar 

  3. Tham Y-C, Li X, Wong TY, Quigley HA, Aung T, Cheng C-Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–90.

    Article  PubMed  Google Scholar 

  4. Sommer A, Tielsch JM, Katz J, Quigley HA, Gottsch JD, Javitt J, et al. Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore eye survey. Arch Ophthalmol Chic Ill 1960. 1991;109(8):1090–5.

    Article  CAS  Google Scholar 

  5. Dielemans I, Vingerling JR, Wolfs RC, Hofman A, Grobbee DE, de Jong PT. The prevalence of primary open-angle glaucoma in a population-based study in the Netherlands. The Rotterdam study. Ophthalmology. 1994;101(11):1851–5.

    Article  CAS  PubMed  Google Scholar 

  6. Varma R, Ying-Lai M, Francis BA, Nguyen BB-T, Deneen J, Wilson MR, et al. Prevalence of open-angle glaucoma and ocular hypertension in Latinos: the Los Angeles Latino Eye Study. Ophthalmology. 2004;111(8):1439–48.

    Article  PubMed  Google Scholar 

  7. Iwase A, Suzuki Y, Araie M, Yamamoto T, Abe H, Shirato S, et al. The prevalence of primary open-angle glaucoma in Japanese: the Tajimi Study. Ophthalmology. 2004;111(9):1641–8.

    PubMed  Google Scholar 

  8. Fechtner RD, Weinreb RN. Mechanisms of optic nerve damage in primary open angle glaucoma. Surv Ophthalmol. 1994;39(1):23–42.

    Article  CAS  PubMed  Google Scholar 

  9. Yan DB, Coloma FM, Metheetrairut A, Trope GE, Heathcote JG, Ethier CR. Deformation of the lamina cribrosa by elevated intraocular pressure. Br J Ophthalmol. 1994;78(8):643–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Flammer J. The vascular concept of glaucoma. Surv Ophthalmol. 1994;38(Suppl):S3–6.

    Article  PubMed  Google Scholar 

  11. Flammer J, Mozaffarieh M. What is the present pathogenetic concept of glaucomatous optic neuropathy? Surv Ophthalmol. 2007;52(Suppl 2):S162–73.

    Article  PubMed  Google Scholar 

  12. Flammer J, Haefliger IO, Orgül S, Resink T. Vascular dysregulation: a principal risk factor for glaucomatous damage? J Glaucoma. 1999;8(3):212–9.

    Article  CAS  PubMed  Google Scholar 

  13. Flammer J, Orgül S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21(4):359–93.

    Article  PubMed  Google Scholar 

  14. Pache M, Dubler B, Flammer J. Peripheral vasospasm and nocturnal blood pressure dipping—two distinct risk factors for glaucomatous damage? Eur J Ophthalmol. 2003;13(3):260–5.

    CAS  PubMed  Google Scholar 

  15. Kaiser HJ, Flammer J. Systemic hypotension: a risk factor for glaucomatous damage? Ophthalmol J Int Ophtalmol Int J Ophthalmol Z Für Augenheilkd. 1991;203(3):105–8.

    Article  CAS  Google Scholar 

  16. Kaiser HJ, Flammer J, Graf T, Stümpfig D. Systemic blood pressure in glaucoma patients. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Für Klin Exp Ophthalmol. 1993;231(12):677–80.

    Article  CAS  Google Scholar 

  17. Orgül S, Kaiser HJ, Flammer J, Gasser P. Systemic blood pressure and capillary blood-cell velocity in glaucoma patients: a preliminary study. Eur J Ophthalmol. 1995;5(2):88–91.

    PubMed  Google Scholar 

  18. • Mroczkowska S, Benavente-Perez A, Negi A, Sung V, Patel SR, Gherghel D. Primary open-angle glaucoma vs normal-tension glaucoma: the vascular perspective. JAMA Ophthalmol. 2013;131(1):36–43. This study compares ocular and systemic vascular regulation in patients with POAG and LTG. Results suggest that vascular risk factors are similar between the two groups, suggesting that they are on the same disease spectrum

    Article  PubMed  Google Scholar 

  19. Flammer J, Pache M, Resink T. Vasospasm, its role in the pathogenesis of diseases with particular reference to the eye. Prog Retin Eye Res. 2001;20(3):319–49.

    Article  CAS  PubMed  Google Scholar 

  20. Wu X, Liu H. Obstructive sleep apnea/hypopnea syndrome increases glaucoma risk: evidence from a meta-analysis. Int J Clin Exp Med. 2015;8(1):297–303.

    PubMed  PubMed Central  Google Scholar 

  21. Bilgin G. Normal-tension glaucoma and obstructive sleep apnea syndrome: a prospective study. BMC Ophthalmol. 2014;14:27.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kiekens S, Veva De Groot, Coeckelbergh T, Tassignon M-J, van de Heyning P, Wilfried De Backer, et al. Continuous positive airway pressure therapy is associated with an increase in intraocular pressure in obstructive sleep apnea. Invest Ophthalmol Vis Sci. 2008;49(3):934–40.

    Article  PubMed  Google Scholar 

  23. Berdahl JP, Fautsch MP, Stinnett SS, Allingham RR. Intracranial pressure in primary open angle glaucoma, normal tension glaucoma, and ocular hypertension: a case-control study. Invest Ophthalmol Vis Sci. 2008;49(12):5412–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Morgan WH, Yu DY, Cooper RL, Alder VA, Cringle SJ, Constable IJ. The influence of cerebrospinal fluid pressure on the lamina cribrosa tissue pressure gradient. Invest Ophthalmol Vis Sci. 1995;36(6):1163–72.

    CAS  PubMed  Google Scholar 

  25. Palamar M, Dag MY, Yagci A. The effects of valsalva manoeuvre on ocular response analyzer measurements. Clin Exp Optom. 2015;98(5):447–50.

    Article  PubMed  Google Scholar 

  26. Teng C, Gurses-Ozden R, Liebmann JM, Tello C, Ritch R. Effect of a tight necktie on intraocular pressure. Br J Ophthalmol. 2003;87(8):946–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim KN, Jeoung JW, Park KH, Kim DM, Ritch R. Relationship between preferred sleeping position and asymmetric visual field loss in open-angle glaucoma patients. Am J Ophthalmol. 2014;157(3):739–45.

    Article  PubMed  Google Scholar 

  28. Carrim ZI, Lavy TE. Goldmann tonometry versus the Tono-Pen XL for intraocular pressure measurement: an evaluation of the potential impact on clinical decision making in glaucoma. Ophthalmic Physiol Opt J Br Coll Ophthalmic Opt Optom. 2009;29(6):648–51.

    Article  Google Scholar 

  29. Molina N, Milla E, Bitrian E, Larena C, Martínez L. Comparison of Goldmann tonometry, pneumotonometry and the effect of the central corneal thickness. Arch Soc Esp Oftalmol. 2010;85(10):325–8.

    Article  CAS  PubMed  Google Scholar 

  30. Mehdizadeh A, Hoseinzadeh A, Fazelzadeh A. Central corneal thickness as a risk factor for glaucoma. Med Hypotheses. 2007;69(6):1205–7.

    Article  PubMed  Google Scholar 

  31. Ishida K, Yamamoto T, Sugiyama K, Kitazawa Y. Disk hemorrhage is a significantly negative prognostic factor in normal-tension glaucoma. Am J Ophthalmol. 2000;129(6):707–14.

    Article  CAS  PubMed  Google Scholar 

  32. Javitt JC, Spaeth GL, Katz LJ, Poryzees E, Addiego R. Acquired pits of the optic nerve. Increased prevalence in patients with low-tension glaucoma. Ophthalmology. 1990;97(8):1038–43. discussion 1043–4

    Article  CAS  PubMed  Google Scholar 

  33. Park SC, De Moraes CG, Teng CCW, Tello C, Liebmann JM, Ritch R. Initial parafoveal versus peripheral scotomas in glaucoma: risk factors and visual field characteristics. Ophthalmology. 2011;118(9):1782–9.

    Article  PubMed  Google Scholar 

  34. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Am J Ophthalmol. 1998; 126(4):487–97.

  35. Vianna JR, Chauhan BC. How to detect progression in glaucoma. Prog Brain Res. 2015;221:135–58.

    Article  PubMed  Google Scholar 

  36. Hangai M, Ikeda HO, Akagi T, Yoshimura N. Paracentral scotoma in glaucoma detected by 10-2 but not by 24-2 perimetry. Jpn J Ophthalmol. 2014;58(2):188–96.

    Article  PubMed  Google Scholar 

  37. Blumberg D, Skaat A, Liebmann JM. Emerging risk factors for glaucoma onset and progression. Prog Brain Res. 2015;221:81–101.

    Article  PubMed  Google Scholar 

  38. de Beaufort HC, De Moraes CGV, Teng CC, Prata TS, Tello C, Ritch R, et al. Recurrent disc hemorrhage does not increase the rate of visual field progression. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Für Klin Exp Ophthalmol. 2010;248(6):839–44.

    Article  Google Scholar 

  39. Marquis RE, Whitson JT. Management of glaucoma: focus on pharmacological therapy. Drugs Aging. 2005;22(1):1–21.

    Article  CAS  PubMed  Google Scholar 

  40. Soltau JB, Zimmerman TJ. Changing paradigms in the medical treatment of glaucoma. Surv Ophthalmol. 2002;47(Suppl 1):S2–5.

    Article  PubMed  Google Scholar 

  41. •• Krupin T, Liebmann JM, Greenfield DS, Ritch R, Gardiner S. Low-pressure glaucoma study group. A randomized trial of brimonidine versus timolol in preserving visual function: results from the low-pressure glaucoma treatment study. Am J Ophthalmol. 2011;151(4):671–81. This study is a randomized multicenter clinical trial that showed that brimonidine may exert some protective effects compared to timolol in low tension glaucoma patients. Results might have been skewed by a high drop out rate in the brimonidine group

    Article  CAS  PubMed  Google Scholar 

  42. Garudadri CS, Choudhari NS, Rao HL, Senthil S. A randomized trial of brimonidine versus timolol in preserving visual function: results from the low-pressure glaucoma treatment study. Am J Ophthalmol. 2011;152(5):877. author reply 877–8

    Article  PubMed  Google Scholar 

  43. Liu CJ, Cheng C-Y, Ko Y-C, Hsu W-M. Diurnal intraocular pressure and blood pressure with two dosing regimens of brimonidine in normal tension glaucoma. J Chin Med Assoc JCMA. 2004;67(9):465–71.

    PubMed  Google Scholar 

  44. Wong MOM, Lee JWY, Choy BNK, Chan JCH, Lai JSM. Systematic review and meta-analysis on the efficacy of selective laser trabeculoplasty in open-angle glaucoma. Surv Ophthalmol. 2015;60(1):36–50.

    Article  PubMed  Google Scholar 

  45. European Glaucoma Society, editor. Terminology and guidelines for glaucoma. 4th ed. Savona: PubliComm; 2014. 195 p.

  46. Lee JWY, Shum JJW, Chan JCH, Lai JSM. Two-year clinical results after selective laser trabeculoplasty for normal tension glaucoma. Medicine (Baltimore). 2015;94(24):e984.

    Article  Google Scholar 

  47. Lee JWY, Liu CCL, Chan JCH, Lai JSM. Predictors of success in selective laser trabeculoplasty for normal tension glaucoma. Medicine (Baltimore). 2014;93(28):e236.

    Article  Google Scholar 

  48. Tojo N, Oka M, Miyakoshi A, Ozaki H, Hayashi A. Comparison of fluctuations of intraocular pressure before and after selective laser trabeculoplasty in normal-tension glaucoma patients. J Glaucoma. 2014;23(8):e138–43.

    Article  PubMed  Google Scholar 

  49. Gedde SJ, Schiffman JC, Feuer WJ, Herndon LW, Brandt JD, Budenz DL, et al. Treatment outcomes in the Tube Versus Trabeculectomy (TVT) study after five years of follow-up. Am J Ophthalmol. 2012; 153(5):789–803.e2.

  50. • Song BJ, Caprioli J. New directions in the treatment of normal tension glaucoma. Indian J Ophthalmol. 2014;62(5):529–37. This article discusses new possible therapies for the treatment of low tension glaucoma. Medications used in other conditions and nutritional supplements sound promising for the treatment of low tension glaucoma

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjali Bhorade.

Ethics declarations

Conflict of Interest

Anjali Bhorade reports grants from the National Eye Institute outside the submitted work. Anitra Turner declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Diagnosis and Monitoring of Glaucoma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turner, A., Bhorade, A. Diagnosis and Monitoring of Low-Tension Glaucoma. Curr Ophthalmol Rep 5, 1–6 (2017). https://doi.org/10.1007/s40135-017-0117-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-017-0117-4

Keywords

Navigation