Skip to main content

Advertisement

Log in

Continuous Monitoring of Intraocular Pressure: An Overview of New Techniques

  • Diagnosis and Monitoring of Glaucoma (R. Kuchtey, Section Editor)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript
  • 1 Altmetric

Abstract

Elevated intraocular pressure (IOP) is the main risk factor for glaucoma and is currently the only treatable risk factor. IOP is dynamic with regular circadian variations and random short-term and long-term fluctuations. Current glaucoma management is mostly based on single IOP measurements during office visits which may not accurately represent a patient’s 24-h pressure profile. Most of glaucoma patients have their highest IOP outside clinic hours, usually during the nocturnal period. Currently, the only available approach for 24-h IOP monitoring is by using repeated tonometry which is inconvenient, expensive, and does not provide continuous monitoring of IOP. The goal of continuous IOP monitoring is to provide automated 24-h ambulatory recording of IOP. In this article, we review the existing technologies for IOP monitoring and evaluate new innovative methods for continuous 24-h IOP monitoring, including temporary non-invasive and permanent invasive approaches that currently being developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Resnikoff S, Pascolini D, Etya’ale D, Kocur I, Pararajasegaram R, Pokharel GP, et al. Global data on visual impairment in the year 2002. Bull World Health Organ. 2004;82(11):844–51. doi:10.1590/S0042-96862004001100009.

    PubMed Central  PubMed  Google Scholar 

  2. Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet. 2004;363(9422):1711–20. doi:10.1016/S0140-6736(04)16257-0.

    Article  PubMed  Google Scholar 

  3. Goldmann H. Bull Mem Soc Fr Ophtalmol. 1954;67:474–7; discussion 7–8.

  4. Ehlers N, Bramsen T, Sperling S. Applanation tonometry and central corneal thickness. Acta Ophthalmol (Copenh). 1975;53(1):34–43.

    Article  CAS  PubMed  Google Scholar 

  5. Liu J, Roberts CJ. Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. J Cataract Refract Surg. 2005;31(1):146–55. doi:10.1016/j.jcrs.2004.09.031.

    Article  PubMed  Google Scholar 

  6. Liu JH, Kripke DF, Twa MD, Hoffman RE, Mansberger SL, Rex KM, et al. Twenty-four-hour pattern of intraocular pressure in the aging population. Invest Ophthalmol Vis Sci. 1999;40(12):2912–7.

    CAS  PubMed  Google Scholar 

  7. Liu JH, Zhang X, Kripke DF, Weinreb RN. Twenty-four-hour intraocular pressure pattern associated with early glaucomatous changes. Invest Ophthalmol Vis Sci. 2003;44(4):1586–90.

    Article  PubMed  Google Scholar 

  8. Barkana Y, Anis S, Liebmann J, Tello C, Ritch R. Clinical utility of intraocular pressure monitoring outside of normal office hours in patients with glaucoma. Arch Ophthalmol. 2006;124(6):793–7. doi:10.1001/archopht.124.6.793.

    Article  PubMed  Google Scholar 

  9. Liu JH, Kripke DF, Hoffman RE, Twa MD, Loving RT, Rex KM, et al. Nocturnal elevation of intraocular pressure in young adults. Invest Ophthalmol Vis Sci. 1998;39(13):2707–12.

    CAS  PubMed  Google Scholar 

  10. Mosaed S, Liu JH, Weinreb RN. Correlation between office and peak nocturnal intraocular pressures in healthy subjects and glaucoma patients. Am J Ophthalmol. 2005;139(2):320–4. doi:10.1016/j.ajo.2004.09.062.

    Article  PubMed  Google Scholar 

  11. Brown B, Burton P, Mann S, Parisi A. Fluctuations in intra-ocular pressure with sleep: II. Time course of IOP decrease after waking from sleep. Ophthalmic Physiol Opt. 1988;8(3):249–52.

    CAS  PubMed  Google Scholar 

  12. Brown B, Morris P, Muller C, Brady A, Swann PG. Fluctuations in intra-ocular pressure with sleep: I. Time course of IOP increase after the onset of sleep. Ophthalmic Physiol Opt. 1988;8(3):246–8.

    CAS  PubMed  Google Scholar 

  13. Aptel F, Tamisier R, Pepin JL, Mottet B, Hubanova R, Romanet JP, et al. Hourly awakening vs continuous contact lens sensor measurements of 24-hour intraocular pressure: effect on sleep macrostructure and intraocular pressure rhythm. JAMA Ophthalmol. 2014;132(10):1232–8. doi:10.1001/jamaophthalmol.2014.1761.

    Article  PubMed  Google Scholar 

  14. Mottet B, Chiquet C, Aptel F, Noel C, Gronfier C, Buguet A, et al. 24-hour intraocular pressure of young healthy humans in supine position: rhythm and reproducibility. Invest Ophthalmol Vis Sci. 2012;53(13):8186–91. doi:10.1167/iovs.12-10877.

    Article  PubMed  Google Scholar 

  15. Hara T, Tsuru T. Increase of peak intraocular pressure during sleep in reproduced diurnal changes by posture. Arch Ophthalmol. 2006;124(2):165–8. doi:10.1001/archopht.124.2.165.

    Article  PubMed  Google Scholar 

  16. Liu JH, Bouligny RP, Kripke DF, Weinreb RN. Nocturnal elevation of intraocular pressure is detectable in the sitting position. Invest Ophthalmol Vis Sci. 2003;44(10):4439–42.

    Article  PubMed  Google Scholar 

  17. Malihi M, Sit AJ. Effect of head and body position on intraocular pressure. Ophthalmology. 2012;119(5):987–91. doi:10.1016/j.ophtha.2011.11.024.

    Article  PubMed  Google Scholar 

  18. Asrani S, Zeimer R, Wilensky J, Gieser D, Vitale S, Lindenmuth K. Large diurnal fluctuations in intraocular pressure are an independent risk factor in patients with glaucoma. J Glaucoma. 2000;9(2):134–42.

    Article  CAS  PubMed  Google Scholar 

  19. Zeimer RC, Wilensky JT, Gieser DK, Viana MA. Association between intraocular pressure peaks and progression of visual field loss. Ophthalmology. 1991;98(1):64–9.

    Article  CAS  PubMed  Google Scholar 

  20. Jonas JB, Budde WM, Stroux A, Oberacher-Velten IM, Junemann A. Diurnal intraocular pressure profiles and progression of chronic open-angle glaucoma. Eye (Lond). 2007;21(7):948–51. doi:10.1038/sj.eye.6702351.

    Article  CAS  PubMed  Google Scholar 

  21. Lee YR, Kook MS, Joe SG, Na JH, Han S, Kim S, et al. Circadian (24-hour) pattern of intraocular pressure and visual field damage in eyes with normal-tension glaucoma. Invest Ophthalmol Vis Sci. 2012;53(2):881–7. doi:10.1167/iovs.11-7846.

    Article  PubMed  Google Scholar 

  22. Wang NL, Friedman DS, Zhou Q, Guo L, Zhu D, Peng Y, et al. A population-based assessment of 24-hour intraocular pressure among subjects with primary open-angle glaucoma: the handan eye study. Invest Ophthalmol Vis Sci. 2011;52(11):7817–21. doi:10.1167/iovs.11-7528.

    Article  PubMed  Google Scholar 

  23. Caprioli J, Coleman AL. Intraocular pressure fluctuation a risk factor for visual field progression at low intraocular pressures in the advanced glaucoma intervention study. Ophthalmology. 2008;115(7):1123–1129 e3. doi:10.1016/j.ophtha.2007.10.031.

    Article  PubMed  Google Scholar 

  24. Leidl MC, Choi CJ, Syed ZA, Melki SA. Intraocular pressure fluctuation and glaucoma progression: what do we know? Br J Ophthalmol. 2014;98(10):1315–9. doi:10.1136/bjophthalmol-2013-303980.

    Article  PubMed  Google Scholar 

  25. Sit AJ. Intraocular pressure variations: causes and clinical significance. Can J Ophthalmol. 2014;49(6):484–8. doi:10.1016/j.jcjo.2014.07.008.

    Article  PubMed  Google Scholar 

  26. Hong S, Seong GJ, Hong YJ. Long-term intraocular pressure fluctuation and progressive visual field deterioration in patients with glaucoma and low intraocular pressures after a triple procedure. Arch Ophthalmol. 2007;125(8):1010–3. doi:10.1001/archopht.125.8.1010.

    Article  PubMed  Google Scholar 

  27. Hong S, Kim CY, Seong GJ. Long-term intraocular pressure fluctuation and visual field progression in glaucoma patients with low intraocular pressure after post-trabeculectomy phacoemulsification. J Ocul Pharmacol Ther. 2007;23(6):571–6. doi:10.1089/jop.2006.0142.

    Article  CAS  PubMed  Google Scholar 

  28. Nouri-Mahdavi K, Hoffman D, Coleman AL, Liu G, Li G, Gaasterland D, et al. Predictive factors for glaucomatous visual field progression in the Advanced Glaucoma Intervention Study. Ophthalmology. 2004;111(9):1627–35. doi:10.1016/j.ophtha.2004.02.017.

    Article  PubMed  Google Scholar 

  29. Rao HL, Addepalli UK, Jonnadula GB, Kumbar T, Senthil S, Garudadri CS. Relationship between intraocular pressure and rate of visual field progression in treated glaucoma. J Glaucoma. 2013;22(9):719–24. doi:10.1097/IJG.0b013e318259b0c2.

    Article  PubMed  Google Scholar 

  30. Bengtsson B, Leske MC, Hyman L, Heijl A. Fluctuation of intraocular pressure and glaucoma progression in the early manifest glaucoma trial. Ophthalmology. 2007;114(2):205–9. doi:10.1016/j.ophtha.2006.07.060.

    Article  PubMed  Google Scholar 

  31. De Moraes CG, Juthani VJ, Liebmann JM, Teng CC, Tello C, Susanna R Jr, et al. Risk factors for visual field progression in treated glaucoma. Arch Ophthalmol. 2011;129(5):562–8. doi:10.1001/archophthalmol.2011.72.

    Article  PubMed  Google Scholar 

  32. Medeiros FA, Weinreb RN, Zangwill LM, Alencar LM, Sample PA, Vasile C, et al. Long-term intraocular pressure fluctuations and risk of conversion from ocular hypertension to glaucoma. Ophthalmology. 2008;115(6):934–40. doi:10.1016/j.ophtha.2007.08.012.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Lee J, Kong M, Kim J, Kee C. Comparison of visual field progression between relatively low and high intraocular pressure groups in normal tension glaucoma patients. J Glaucoma. 2014;23(8):553–60. doi:10.1097/IJG.0b013e31829484c6.

    Article  PubMed  Google Scholar 

  34. Hughes E, Spry P, Diamond J. 24-hour monitoring of intraocular pressure in glaucoma management: a retrospective review. J Glaucoma. 2003;12(3):232–6.

    Article  PubMed  Google Scholar 

  35. Wang B, Dai T, Zhao Y, Gao C, Liu J, Chen P. Analysis of 24-hour monitoring of intraocular pressure in 1055 eyes. Eye Sci. 2013;28(3):119–23.

    PubMed  Google Scholar 

  36. Sit AJ, Liu JH. Pathophysiology of glaucoma and continuous measurements of intraocular pressure. Mol Cell Biomech. 2009;6(1):57–69.

    PubMed  Google Scholar 

  37. Liang SY, Lee GA, Shields D. Self-tonometry in glaucoma management—past, present and future. Surv Ophthalmol. 2009;54(4):450–62. doi:10.1016/j.survophthal.2009.04.006.

    Article  PubMed  Google Scholar 

  38. Tarkkanen A, Ulfves K, Ulfves T. Self-tonometry in glaucoma. Graefes Arch Clin Exp Ophthalmol. 2010;248(11):1679–81. doi:10.1007/s00417-010-1421-y.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Sit AJ. Continuous monitoring of intraocular pressure: rationale and progress toward a clinical device. J Glaucoma. 2009;18(4):272–9. doi:10.1097/IJG.0b013e3181862490.

    Article  PubMed  Google Scholar 

  40. McLaren JW, Brubaker RF, FitzSimon JS. Continuous measurement of intraocular pressure in rabbits by telemetry. Invest Ophthalmol Vis Sci. 1996;37(6):966–75.

    CAS  PubMed  Google Scholar 

  41. Schnell CR, Debon C, Percicot CL. Measurement of intraocular pressure by telemetry in conscious, unrestrained rabbits. Invest Ophthalmol Vis Sci. 1996;37(6):958–65.

    CAS  PubMed  Google Scholar 

  42. Dinslage S, McLaren J, Brubaker R. Intraocular pressure in rabbits by telemetry II: effects of animal handling and drugs. Invest Ophthalmol Vis Sci. 1998;39(12):2485–9.

    CAS  PubMed  Google Scholar 

  43. Akaishi T, Ishida N, Shimazaki A, Hara H, Kuwayama Y. Continuous monitoring of circadian variations in intraocular pressure by telemetry system throughout a 12-week treatment with timolol maleate in rabbits. J Ocul Pharmacol Ther. 2005;21(6):436–44. doi:10.1089/jop.2005.21.436.

    Article  CAS  PubMed  Google Scholar 

  44. Maurice DM. A recording tonometer. Br J Ophthalmol. 1958;42(6):321–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Leonardi M, Pitchon EM, Bertsch A, Renaud P, Mermoud A. Wireless contact lens sensor for intraocular pressure monitoring: assessment on enucleated pig eyes. Acta Ophthalmol (Copenh). 2009;87(4):433–7. doi:10.1111/j.1755-3768.2008.01404.x.

    Article  Google Scholar 

  46. Hjortdal JO, Jensen PK. In vitro measurement of corneal strain, thickness, and curvature using digital image processing. Acta Ophthalmol Scand. 1995;73(1):5–11.

    Article  CAS  PubMed  Google Scholar 

  47. Leonardi M, Leuenberger P, Bertrand D, Bertsch A, Renaud P. First steps toward noninvasive intraocular pressure monitoring with a sensing contact lens. Invest Ophthalmol Vis Sci. 2004;45(9):3113–7. doi:10.1167/iovs.04-0015.

    Article  PubMed  Google Scholar 

  48. Lam AK, Douthwaite WA. The effect of an artificially elevated intraocular pressure on the central corneal curvature. Ophthalmic Physiol Opt. 1997;17(1):18–24.

    Article  CAS  PubMed  Google Scholar 

  49. Mansouri K. The road ahead to continuous 24-hour intraocular pressure monitoring in glaucoma. J Ophthalmic Vis Res. 2014;9(2):260–8.

    PubMed Central  PubMed  Google Scholar 

  50. •• Mansouri K, Medeiros FA, Tafreshi A, Weinreb RN. Continuous 24-hour monitoring of intraocular pressure patterns with a contact lens sensor: safety, tolerability, and reproducibility in patients with glaucoma. Arch Ophthalmol. 2012;130(12):1534–9. doi:10.1001/jamaophthalmol.2013.1350. This paper is the first to report a systematic study of the safety and reproducibility of measurements from a temporary continuous IOP monitoring system in humans.

  51. Kida T, Liu JH, Weinreb RN. Effect of 24-hour corneal biomechanical changes on intraocular pressure measurement. Invest Ophthalmol Vis Sci. 2006;47(10):4422–6. doi:10.1167/iovs.06-0507.

    Article  PubMed  Google Scholar 

  52. Kida T, Liu JH, Weinreb RN. Effects of aging on corneal biomechanical properties and their impact on 24-hour measurement of intraocular pressure. Am J Ophthalmol. 2008;146(4):567–72. doi:10.1016/j.ajo.2008.05.026.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Freiberg FJ, Lindell J, Thederan LA, Leippi S, Shen Y, Klink T. Corneal thickness after overnight wear of an intraocular pressure fluctuation contact lens sensor. Acta Ophthalmol (Copenh). 2012;90(7):e534–9. doi:10.1111/j.1755-3768.2012.02495.x.

    Article  Google Scholar 

  54. Hubanova R, Aptel F, Chiquet C, Mottet B, Romanet JP. Effect of overnight wear of the Triggerfish((R)) sensor on corneal thickness measured by Visante((R)) anterior segment optical coherence tomography. Acta Ophthalmol (Copenh). 2014;92(2):e119–23. doi:10.1111/aos.12241.

    Article  Google Scholar 

  55. • Mansouri K, Liu JH, Weinreb RN, Tafreshi A, Medeiros FA. Analysis of continuous 24-hour intraocular pressure patterns in glaucoma. Invest Ophthalmol Vis Sci. 2012;53(13):8050–6. doi:10.1167/iovs.12-10569. This study is the first to investigate the important problem of clinically interpreting of the vast amounts of data obtained from continuous IOP monitoring.

  56. Lorenz K, Korb C, Herzog N, Vetter JM, Elflein H, Keilani MM, et al. Tolerability of 24-hour intraocular pressure monitoring of a pressure-sensitive contact lens. J Glaucoma. 2013;22(4):311–6. doi:10.1097/IJG.0b013e318241b874.

    Article  PubMed  Google Scholar 

  57. Mansouri K, Shaarawy T. Continuous intraocular pressure monitoring with a wireless ocular telemetry sensor: initial clinical experience in patients with open angle glaucoma. Br J Ophthalmol. 2011;95(5):627–9. doi:10.1136/bjo.2010.192922.

    Article  PubMed  Google Scholar 

  58. Mottet B, Aptel F, Romanet JP, Hubanova R, Pepin JL, Chiquet C. 24-hour intraocular pressure rhythm in young healthy subjects evaluated with continuous monitoring using a contact lens sensor. JAMA Ophthalmol. 2013;131(12):1507–16. doi:10.1001/jamaophthalmol.2013.5297.

    Article  PubMed  Google Scholar 

  59. Hollo G, Kothy P, Vargha P. Evaluation of continuous 24-hour intraocular pressure monitoring for assessment of prostaglandin-induced pressure reduction in glaucoma. J Glaucoma. 2014;23(1):e6–12. doi:10.1097/IJG.0b013e31829e5635.

    Article  PubMed  Google Scholar 

  60. Faschinger C, Mossbock G. Validity of the results of a contact lens sensor? JAMA Ophthalmol. 2013;131(5):696–7. doi:10.1001/jamaophthalmol.2013.2874.

    Article  PubMed  Google Scholar 

  61. Sanchez I, Laukhin V, Moya A, Martin R, Ussa F, Laukhina E, et al. Prototype of a nanostructured sensing contact lens for noninvasive intraocular pressure monitoring. Invest Ophthalmol Vis Sci. 2011;52(11):8310–5. doi:10.1167/iovs.10-7064.

    Article  PubMed  Google Scholar 

  62. Chen GZ, Chan IS, Leung LK, Lam DC. Soft wearable contact lens sensor for continuous intraocular pressure monitoring. Med Eng Phys. 2014;36(9):1134–9. doi:10.1016/j.medengphy.2014.06.005.

    Article  PubMed  Google Scholar 

  63. Collins CC. Miniature passive pressure transensor for implanting in the eye. IEEE Trans Biomed Eng. 1967;14(2):74–83.

    Article  CAS  PubMed  Google Scholar 

  64. Margalit I, Beiderman Y, Skaat A, Rosenfeld E, Belkin M, Tornow RP, et al. New method for remote and repeatable monitoring of intraocular pressure variations. J Biomed Opt. 2014;19(2):027002. doi:10.1117/1.JBO.19.2.027002.

    Article  PubMed  Google Scholar 

  65. Svedbergh B, Backlund Y, Hok B, Rosengren L. The IOP-IOL. A probe into the eye. Acta Ophthalmol (Copenh). 1992;70(2):266–8.

    Article  CAS  PubMed  Google Scholar 

  66. Walter P, Schnakenberg U, vom Bogel G, Ruokonen P, Kruger C, Dinslage S, et al. Development of a completely encapsulated intraocular pressure sensor. Ophthalmic Res. 2000;32(6):278–84.

    Article  CAS  PubMed  Google Scholar 

  67. Walter P. Intraocular pressure sensor: where are we—where will we go? Graefes Arch Clin Exp Ophthalmol. 2002;240(5):335–6. doi:10.1007/s00417-002-0474-y.

    Article  PubMed  Google Scholar 

  68. • Todani A, Behlau I, Fava MA, Cade F, Cherfan DG, Zakka FR et al. Intraocular pressure measurement by radio wave telemetry. Invest Ophthalmol Vis Sci. 2011;52(13):9573–80. doi:10.1167/iovs.11-7878. This study is the first in vivo report of a novel permanent continuous IOP monitoring system.

  69. Melki S, Todani A, Cherfan G. An implantable intraocular pressure transducer: initial safety outcomes. JAMA Ophthalmol. 2014;132(10):1221–5. doi:10.1001/jamaophthalmol.2014.1739.

    Article  PubMed  Google Scholar 

  70. Chitnis G, Maleki T, Samuels B, Cantor LB, Ziaie B. A minimally invasive implantable wireless pressure sensor for continuous IOP monitoring. IEEE Trans Biomed Eng. 2013;60(1):250–6. doi:10.1109/TBME.2012.2205248.

    Article  PubMed  Google Scholar 

  71. Araci IE, Su B, Quake SR, Mandel Y. An implantable microfluidic device for self-monitoring of intraocular pressure. Nat Med. 2014;20(9):1074–8. doi:10.1038/nm.3621.

    Article  CAS  PubMed  Google Scholar 

  72. Mansouri K, Weinreb RN, Medeiros FA. Is 24-hour intraocular pressure monitoring necessary in glaucoma? Semin Ophthalmol. 2013;28(3):157–64. doi:10.3109/08820538.2013.771201.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Sit is the recipient of a Research to Prevent Blindness Schaub Special Scholar Award.

Disclosure

Dr. Kazemi and Dr. McLaren both declare they have no conflicts of interests. Dr. Sit declares that this review was supported by an unrestricted departmental grant from Research to Prevent Blindness, New York, NY, and the Mayo Foundation for Medical Education and Research.

Human and Animal Rights and Informed Consent

This article contains no studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur J. Sit.

Additional information

This article is part of the Topical Collection on Diagnosis and Monitoring of Glaucoma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemi, A., McLaren, J.W. & Sit, A.J. Continuous Monitoring of Intraocular Pressure: An Overview of New Techniques. Curr Ophthalmol Rep 3, 58–66 (2015). https://doi.org/10.1007/s40135-015-0066-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-015-0066-8

Keywords

Navigation