Clinical Applications for Doppler Ultrasonography in Obstetrics


Purpose of Review

Doppler ultrasonography is routinely utilized in the management of pregnancies affected by or at risk for fetal growth restriction. As clinicians increasingly rely on such technology to aid in assessing fetal wellbeing and determine need for delivery, it is important for those performing prenatal ultrasound to understand the utility and limitations of specific Doppler studies.

Recent Findings

While umbilical artery Doppler indices remain essential in identifying fetuses at risk for poor outcomes in the setting of growth restriction, recent studies have shown the potential for improving clinical management by evaluating Doppler flow in additional maternal and fetal vessels.


This article provides background, clinical context, and updated practical guidance for the use of targeted Doppler ultrasonography in pregnancy. Specific Doppler indices used in the screening, diagnosis, and management of maternal and fetal complications are reviewed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


Recently published papers of particular interest have been highlighted as: • Of importance. •• Of major importance.

  1. 1.

    ••Martins JG, Biggio JR, Abuhamad A. Society for Maternal-Fetal Medicine (SMFM) Consult series #52: diagnosis and management of fetal growth restriction. Am J Obstet Gynecol. 2020; S0002–9378(20)30535–4. This article provides the latest summary from the Society for Maternal-Fetal Medicine for the management of fetal growth restriction, including the utilization of Doppler ultrasonography.

  2. 2.

    Baschat AA. Planning management and delivery of the growth-restricted fetus. Best Pract Res Clin Obstet Gynaecol. 2018;49:53–65.

    Article  PubMed  Google Scholar 

  3. 3.

    Unterscheider J, Daly S, Geary MP, et al. Optimizing the definition of intrauterine growth restriction: the multicenter prospective PORTO Study. Am J Obstet Gynecol. 2013;208:290.e1-6.

    Article  PubMed  Google Scholar 

  4. 4.

    Unterscheider J, O’donoghue K, Daly S, et al. Fetal growth restriction and the risk of perinatal mortality-case studies from the multicentre PORTO study. BMC Pregnancy Childbirth. 2014;14:63.

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Maulik D, Yarlagadda P, Youngblood JP, Ciston P. Comparative efficacy of umbilical arterial Doppler indices for predicting adverse perinatal outcome. Am J Obstet Gynecol. 1991;164(6 Pt 1):1434–9.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Apel-sarid L, Levy A, Holcberg G, Sheiner E. Term and preterm (<34 and <37 weeks gestation) placental pathologies associated with fetal growth restriction. Arch Gynecol Obstet. 2010;282(5):487–92.

    Article  PubMed  Google Scholar 

  7. 7.

    Thompson RS, Trudinger BJ. Doppler waveform pulsatility index and resistance, pressure and flow in the umbilical placental circulation: an investigation using a mathematical model. Ultrasound Med Biol. 1990;16(5):449–58.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Baschat AA, Cosmi E, Bilardo CM, Wolf H, Berg C, Rigano S, et al. Predictors of neonatal outcome in early-onset placental dysfunction. Obstet Gynecol. 2007;109(2 Pt 1):253–61.

    Article  Google Scholar 

  9. 9.

    Lees C, Marlow N, Arabin B, Bilardo CM, Brezinka C, Derks JB, et al. Perinatal morbidity and mortality in early-onset fetal growth restriction: cohort outcomes of the trial of randomized umbilical and fetal flow in Europe (TRUFFLE). Ultrasound Obstet Gynecol. 2013;42(4):400–8.

    CAS  Article  Google Scholar 

  10. 10.

    Rizzo G, Capponi A, Soregaroli M, Arduini D, Romanini C. Umbilical vein pulsations and acid-base status at cordocentesis in growth-retarded fetuses with absent end-diastolic velocity in umbilical artery. Biol Neonate. 1995;68(3):163–8.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Alfirevic Z, Stampalija T, Dowswell T. Fetal and umbilical Doppler ultrasound in high- risk pregnancies. Cochrane Database Syst Rev. 2017;6:Cd007529.

    Article  PubMed  Google Scholar 

  12. 12.

    Alfirevic Z, Stampalija T, Medley N. Fetal and umbilical Doppler ultrasound in normal pregnancy. Cochrane Database Syst Rev. 2015;4:CD001450.

    Article  Google Scholar 

  13. 13.

    Berkley E, Chauhan SP, Abuhamad A. Doppler assessment of the fetus with intrauterine growth restriction. Am J Obstet Gynecol. 2012;206(4):300–8.

    Article  PubMed  Google Scholar 

  14. 14.

    Bellotti M, Pennati G, De Gasperi C, Bozzo M, Battaglia FC, Ferrazzi E. Simultaneous measurements of umbilical venous, fetal hepatic, and ductus venosus blood flow in growth-restricted human fetuses. Am J Obstet Gynecol. 2004;190(5):1347–58.

    Article  Google Scholar 

  15. 15.

    Abuhamad AZ, Chaoui R. Systematic Evaluation of the Venous System. In: A Practical Guide to Fetal Echocardiography: Normal and Abnormal Hearts: Wolters Kluwer Health; 2015.

  16. 16.

    Baschat AA. Arterial and venous Doppler in the diagnosis and management of early onset fetal growth restriction. Early Hum Dev. 2005;81(11):877–87.

    Article  PubMed  Google Scholar 

  17. 17.

    ••Caradeux J, Martinez-Portilla RJ, Basuki TR, Kiserud T, Figueras F. Risk of fetal death in growth-restricted fetuses with umbilical and/or ductus venosus absent or reversed end-diastolic velocities before 34 weeks of gestation: a systematic review and meta-analysis. Am J Obstet Gynecol. 2018;218(2):S774-S82.e21. This article provides one of the largest, most contemporary data analyses pertaining to outcomes in FGR fetuses with Doppler study abnormalities.

  18. 18.

    Lees CC, Marlow N, van Wassenaer-Leemhuis A, Arabin B, Bilardo CM, Brezinka C, et al. 2 year neurodevelopmental and intermediate perinatal outcomes in infants with very preterm fetal growth restriction (TRUFFLE): a randomised trial. Lancet. 2015;385(9983):2162–72.

    Article  PubMed  Google Scholar 

  19. 19.

    Ganzevoort W, Thornton JG, Marlow N, Thilaganathan B, Arabin B, Prefumo F, et al. Comparative analysis of 2-year outcomes in GRIT and TRUFFLE trials. Ultrasound Obstet Gynecol. 2020;55(1):68–74.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Stridsklev S, Salvesen O, Salvesen KA, Carlsen SM, Husoy MA, Vanky E. Uterine artery Doppler measurements during first and second trimesters of normal pregnancy. Acta Obstet Gynecol Scand. 2017;96(3):366–71.

    Article  Google Scholar 

  21. 21.

    Gomez O, Figueras F, Fernandez S, Bennasar M, Martinez JM, Puerto B, et al. Reference ranges for uterine artery mean pulsatility index at 11–41 weeks of gestation. Ultrasound Obstet Gynecol. 2008;32(2):128–32.

    CAS  Article  Google Scholar 

  22. 22.

    Oros D, Figueras F, Cruz-Martinez R, Meler E, Munmany M, Gratacos E. Longitudinal changes in uterine, umbilical and fetal cerebral Doppler indices in late-onset small-for-gestational age fetuses. Ultrasound Obstet Gynecol. 2011;37(2):191–5.

    CAS  Article  Google Scholar 

  23. 23.

    Pedroso MA, Palmer KR, Hodges RJ, Costa FDS, Rolnik DL. Uterine artery Doppler in screening for preeclampsia and fetal growth restriction. Rev Bras Ginecol Obstet. 2018;40(5):287–93.

    Article  PubMed  Google Scholar 

  24. 24.

    ••Tan MY, Syngelaki A, Poon LC, Rolnik DL, O’Gorman N, Delgado JL, Akolekar R, Konstantinidou L, Tsavdaridou M, Galeva S, Ajdacka U, Molina FS, Persico N, Jani JC, Plasencia W, Greco E, Papaioannou G, Wright A, Wright D, Nicolaides KH. Screening for pre-eclampsia by maternal factors and biomarkers at 11–13 weeks’ gestation. Ultrasound Obstet Gynecol 2018; 52: 186–195. This article provided much of the foundational evidence by which first trimester screening for preeclampsia risk was established in Europe utilizing biomarkers and uterine artery Doppler indices.

  25. 25.

    Litwinska M, Syngelaki A, Wright A, Wright D, Nicolaides KH. Management of pregnancies after combined screening for pre-eclampsia at 19–24 weeks’ gestation. Ultrasound Obstet Gynecol. 2018;52:365–72.

    CAS  Article  Google Scholar 

  26. 26.

    Panaitescu A, Ciobanu A, Syngelaki A, Wright A, Wright D, Nicolaides KH. Screening for preeclampsia at 35–37 weeks’ gestation. Ultrasound Obstet Gynecol. 2018;52:501–6.

    CAS  Article  Google Scholar 

  27. 27.

    Rolnik DL, Wright D, Poon LC, O’Gorman N, Syngelaki A, de Paco MC, Akolekar R, Cicero S, Janga D, Singh M, Molina FS, Persico N, Jani JC, Plasencia W, Papaioannou G, Tenenbaum-Gavish K, Meiri H, Gizurarson S, Maclagan K, Nicolaides KH. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N Engl J Med. 2017;377:613–22.

    CAS  Article  Google Scholar 

  28. 28.

    Mari G, Deter RL, Carpenter RL, Rahman F, Zimmerman R, Moise KJ, et al. Noninvasive diagnosis by Doppler ultrasonography of fetal anemia due to maternal red-cell alloimmunization. N Engl J Med. 2000;342(1):9–14.

    CAS  Article  Google Scholar 

  29. 29.

    Prefumo F, Fichera A, Fratelli N, Sartori E. Fetal anemia: diagnosis and management. Best Pract Res Clin Obstet Gynaecol. 2019;58:2–14.

    Article  Google Scholar 

  30. 30.

    Oepkes D, Seaward PG, Vandenbussche FP, Windrim R, Kingdom J, Beyene J, et al. Doppler ultrasonography versus amniocentesis to predict fetal anemia. N Engl J Med. 2006;355(2):156–64.

    CAS  Article  Google Scholar 

  31. 31.

    •Lyu CJ, Xu C, Yu J, Xia LP. Diagnostic performance of Doppler ultrasonography for the detection of fetal anemia: a meta-analysis. Ultrasound Q. 2019;35(4):339–45. This article provides a large, contemporary analysis of the utility of MCA Doppler sonography to diagnoses fetal anemia.

  32. 32.

    Martinez-Portilla RJ, Lopez-Felix J, Hawkins-Villareal A, Villafan-Bernal JR, Paz y Miño F, Figueras F, et al. Performance of fetal middle cerebral artery peak systolic velocity for prediction of anemia in untransfused and transfused fetuses: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2019;54(6):722–31.

    CAS  Article  Google Scholar 

  33. 33.

    Arbeille P, Maulik D, Fignon A, Stale H, Berson M, Bodard S, et al. Assessment of the fetal Po2 changes by cerebral and umbilical Doppler on lamb fetuses during acute hypoxia. Ultrasound Med Biol. 1995;21(7):861–70.

    CAS  Article  Google Scholar 

  34. 34.

    Veille J-C, Hanson R, Tatum K. Longitudinal quantitation of middle cerebral artery blood flow in normal human fetuses. Am J Obstet Gynecol. 1993;169(6):1393–8.

    CAS  Article  Google Scholar 

  35. 35.

    Baschat AA, Gembruch U. The cerebroplacental Doppler ratio revisited. Ultrasound Obstet Gynecol. 2003;21(2):124–7.

    CAS  Article  Google Scholar 

  36. 36.

    Devore GR. The importance of the cerebroplacental ratio in the evaluation of fetal well-being in SGA and AGA fetuses. Am J Obstet Gynecol. 2015;213(1):5–15.

    Article  PubMed  Google Scholar 

  37. 37.

    Vollgraff Heidweiller-Schreurs CA, De Boer MA, Heymans MW, Schoonmade LJ, Bossuyt PMM, Mol BWJ, et al. Prognostic accuracy of cerebroplacental ratio and middle cerebral artery Doppler for adverse perinatal outcome: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2018;51(3):313–22.

    CAS  Article  Google Scholar 

  38. 38.

    Odibo AO, Riddick C, Pare E, Stamilio DM, Macones GA. Cerebroplacental Doppler ratio and adverse perinatal outcomes in intrauterine growth restriction. J Ultrasound Med. 2005;24(9):1223–8.

    Article  Google Scholar 

  39. 39.

    Flood K, Unterscheider J, Daly S, Geary MP, Kennelly MM, McAuliffe FM, et al. The role of brain sparing in the prediction of adverse outcomes in intrauterine growth restriction: results of the multicenter PORTO Study. Am J Obstet Gynecol. 2014;211(3):288.e1-e5.

    Article  Google Scholar 

  40. 40.

    •• Vollgraff Heidweiller-Schreurs CA, van Osch IR, Heymans MW, Ganzevoort W, Schoonmade LJ, Bax CJ, et al. Cerebroplacental ratio in predicting adverse perinatal outcome: a meta-analysis of individual participant data. BJOG. 2020. This article is a thorough, contemporary review and meta-analysis of relevant CPR research.

  41. 41.

    Simpson LL. Twin-twin transfusion syndrome. Am J Obstet Gynecol. 2013;208(1):3–18.

    Article  PubMed  Google Scholar 

  42. 42.

    Quintero RA, Morales WJ, Allen MH, Bornick PW, Johnson PK, Kruger M. Staging of twin-twin transfusion syndrome. J Perinatol. 1999;19(8 Pt 1):550–5.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Lopriore E, Middeldorp JM, Oepkes D, Kanhai HH, Walther FJ, Vandenbussche FP. Twin anemia-polycythemia sequence in two monochorionic twin pairs without oligo-polyhydramnios sequence. Placenta. 2007;28(1):47–51.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Slaghekke F, Kist WJ, Oepkes D, et al. Twin anemia-polycythemia sequence: diagnostic criteria, classification, perinatal management and outcome. Fetal Diagn Ther. 2010;27(4):181–90.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Dora J. Melber.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Ultrasound.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Melber, D.J., Ballas, J. Clinical Applications for Doppler Ultrasonography in Obstetrics. Curr Radiol Rep 9, 2 (2021).

Download citation


  • Fetal growth restriction
  • Doppler studies
  • Umbilical artery
  • Uterine artery
  • Ductus venosus
  • Middle cerebral artery