Skip to main content

Advertisement

Log in

A Review of the Currently Available Retrievable and Next Generation Inferior Vena Cava Filters

  • Quality and Safety (H Abujudeh, Section Editor)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

Purpose

A review and comparison of the currently available removal and novel Inferior Vena Cava Filters; including design characteristics, composition, delivery methods, and limitations. This article is aimed at aiding interventionists in filter selection by providing easily accessible data.

Recent Findings

The Inferior Vena Cava filters has and will continue to play a primary role in the prevention of thromboembolic disease, especially in the acute care setting. There are a plethora of publications regarding the safety and efficacy of the traditional removable filter in addition to multiple comparative analyses discussing their intervariability and design characteristics. Over the last three years, the FDA has approved novel filter designs for widespread use. While the research on these “next-generation” filters is relatively limited compared to the traditional designs, the results are promising.

Summary

Nine of the most commonly used filters in the United States were included in the final review. Manufacture specifications are listed for each filter. The available literature, including clinical trials on the newer generation filter designs, is summarized. Understanding of the variability between filter options, short- and long-term complications, optimal removal time, delivery methods, and retrieval methods will hopefully aid current and future practitioners in optimizing their filter selection to improve patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Important •• Very important

  1. Ghatan CE, Ryu RK. Permanent versus retrievable inferior vena cava filters: rethinking the “one-filter-for-all” approach to mechanical thromboembolic prophylaxis. Semin Interv Radiol. 2016;33(2):75–8. https://doi.org/10.1055/s-0036-1582123.

    Article  Google Scholar 

  2. Greenfield LJ, Rutherford RB. Recommended reporting standards for vena caval filter placement and patient follow-up. J Vasc Interv Radiol. 1999;10(8):1013–9. https://doi.org/10.1016/s1051-0443(99)70185-5.

    Article  CAS  PubMed  Google Scholar 

  3. Hussain SA. Kazi Mobin-Uddin, 1930-1999. J Vasc Surg. 2000;32(2):406–7.

    Article  CAS  Google Scholar 

  4. Kearon C, et al. Antithrombotic therapy for VTE disease. Chest. 2016;149(2):315–52.

    Article  Google Scholar 

  5. Angel LF, Tapson V, Galgon RE, Restrepo MI, Kaufman J. Systematic review of the use of retrievable inferior vena cava filters. J Vasc Interv Radiol. 2011. https://doi.org/10.1016/j.jvir.2011.08.024.

    Article  PubMed  Google Scholar 

  6. Friedell ML, Nelson PR, Cheatham ML. Vena cava filter practices of a regional vascular surgery society. Ann Vasc Surg. 2012;26(5):630–5. https://doi.org/10.1016/j.avsg.2011.11.033.

    Article  PubMed  Google Scholar 

  7. Brown J, Raissi D, Han Q, Adams V, Talbert J. Vena cava filter retrieval rates and factors associated with retrieval in a large U.S cohort. J Vasc Surg. 2018;6(1):135–6. https://doi.org/10.1016/j.jvsv.2017.10.009.

    Article  Google Scholar 

  8. Eifler AC, Lewandowski RJ, Gupta R, et al. Optional or permanent: clinical factors that optimize inferior vena cava filter utilization. J Vasc Interv Radiol. 2013;24(1):35–40.

    Article  Google Scholar 

  9. DeYoung E, Minocha J. Inferior vena cava filters: guidelines, best practice, and expanding indications. Semin Interv Radiol. 2016;33(2):65–70. https://doi.org/10.1055/s-0036-1581088.

    Article  Google Scholar 

  10. Princewell K, Awan O, Ali M, Awan Y, Iliescu B. Inferior vena cava filters: a contemporary review. Inferior vena cava filters: a contemporary review; 2006. https://www.appliedradiology.com/articles/inferior-vena-cava-filters-a-contemporary-review. Accessed 8 Apr 2019.

  11. •Kaufman JA, Kinney TB, Streiff MB, et al. Guidelines for the use of retrievable and convertible vena cava filters: report from the Society of Interventional Radiology multidisciplinary consensus conference. J Vasc Interv Radiol. 2006;17(3):449–59. Provided the clinical guidelines for filter placement and removal.

  12. Kinney TB. Update on inferior vena cava filters. J Vasc Interv Radiol. 2003;14(4):425–40. https://doi.org/10.1097/01.rvi.0000064860.87207.77.

    Article  PubMed  Google Scholar 

  13. ••Montgomery JP, Kaufman JA. A critical review of available retrievable inferior vena cava filters and future directions. Semin Interv Radiol. 2016;33(2):79–87. https://doi.org/10.1055/s-0036-1582121. This article was essential in my literature review process and helped me to establish a framwork in which to compose my article.

    Article  Google Scholar 

  14. Morales JP, Li X, Irony TZ, et al. Decision analysis of retrievable inferior vena cava filters in patients without pulmonary embolism. J Vasc Surg. 2013;1:376–84.

    PubMed  Google Scholar 

  15. ALN Implants Chirurgicaux. Technical sheet ALN inferior vena cava filter with hook; 2014.

  16. Mismetti P, Rivron-Guillot K, Quenet S, et al. A prospective long- term study of 220 patients with a retrievable vena cava filter for secondary prevention of venous thromboembolism. Chest. 2007;131(1):223–9.

    Article  Google Scholar 

  17. Pellerin O, Primio MD, Sanchez O, Meyer G, Sapoval M. Successful retrieval of 29 ALN inferior vena cava filters at a mean of 25.6 months after placement. J Vasc Interv Radiol. 2013;24(2):284–8. https://doi.org/10.1016/j.jvir.2012.10.010.

    Article  PubMed  Google Scholar 

  18. ALN Implants Chirurgicaux. ALN vena cava filter extraction and/or repositioning kit.

  19. Cook Medical. Cook Celect platinum vena cava filter set for femoral approach. Bloomington, IN; 2017.

  20. Lee BE, Allan RJV, Friedman ML, Lipshutz HG. Complications and retrieval characteristics of Celect Platinum inferior vena cava filters. J Vasc Surg. 2018;6(2):163–72. https://doi.org/10.1016/j.jvsv.2017.09.006.

    Article  PubMed  Google Scholar 

  21. Bos A, Tullius T, Patel M, Ha TV. Complications and retrieval data of Denali and Celect infrarenal vena cava filters. J Vasc Interv Radiol. 2016. https://doi.org/10.1016/j.jvir.2015.12.050.

    Article  PubMed  Google Scholar 

  22. Bos A, Ha TV, Beek DV, et al. Strut penetration: local complications, breakthrough pulmonary embolism, and retrieval failure in patients with Celect vena cava filters. J Vasc Interv Radiol. 2015;26(1):101–6. https://doi.org/10.1016/j.jvir.2014.09.010.

    Article  PubMed  Google Scholar 

  23. Bard BD. Denali inferior vena cava filter; 2016.

  24. Stavropoulos SW, Chen JX, Sing RF, et al. Analysis of the final DENALI trial data: a prospective, multicenter study of the Denali inferior vena cava filter. J Vasc Interv Radiol. 2016. https://doi.org/10.1016/j.jvir.2016.06.028.

    Article  PubMed  Google Scholar 

  25. Argon Medical Devices. Option Elite retrievable vena cava filter.

  26. Dowell JD, Semaan D, Makary MS, et al. Retrieval characteristics of the Bard Denali and Argon Option inferior vena cava filters. J Vasc Surg. 2017;5(6):800–4.

    PubMed  Google Scholar 

  27. Ryu RK, et al. A comparison of retrievability: Celect versus option filter. J Vasc Interv Radiol. 2015;26(6):865–9.

    Article  Google Scholar 

  28. Cordis. Optease retrievable inferior vena cava filter; 2016.

  29. •Deso SE, Idakoji IA, Kuo WT. Evidence-based evaluation of inferior vena cava filter complications based on filter type. Semin Interv Radiol. 2016;33(2):93–100. Great compatitive analysis of filter types and complications.

  30. Onat L, Ganiyusufoglu AK, Mutlu A, et al. OptEase and TrapEase vena cava filters: a single-center experience in 258 patients. Cardiovasc Interv Radiol. 2009;32(5):992–7.

    Article  Google Scholar 

  31. Rimon U, Bensaid P, Golan G, et al. Optease vena cava filter optimal indwelling time and retrievability. Cardiovasc Interv Radiol. 2011;34(3):532–5.

    Article  Google Scholar 

  32. Scher D, Venbrux A, Okapal K, et al. Retrieval of TRAPEASE and OPTEASE inferior vena cava filters with extended dwell times. J Vasc Interv Radiol. 2015;26(10):1519–25.

    Article  Google Scholar 

  33. Cook Medical. Cook Gunther tulip vena cava filter set for femoral approach, Bloomington, IN; 2009.

  34. Olorunsola OG, Kohi MP, Fidelman N, et al. Caval penetration by retrievable inferior vena cava filters: a retrospective comparison of Option and Günther Tulip filters. J Vasc Interv Radiol. 2013;24(4):566–71.

    Article  Google Scholar 

  35. Hoffer EK, Mueller RJ, Luciano MR, Lee NN, Michaels AT, Gemery JM. Safety and efficacy of the Gunther Tulip retrievable vena cava filter: midterm outcomes. Cardiovasc Interv Radiol. 2013;36(4):998–1005.

    Article  Google Scholar 

  36. Glocker RJ, Novak Z, Matthews TC, et al. Factors affecting Cook Gunther Tulip and Cook Celect inferior vena cava filter retrieval success. J Vasc Surg. 2014;2(1):21–5. https://doi.org/10.1016/j.jvsv.2013.09.002.

    Article  PubMed  Google Scholar 

  37. Taccone FS, Bunker N, Waldmann C, et al. A new device for the prevention of pulmonary embolism in critically ill patients: results of the European Angel Catheter Registry. J Trauma Acute Care Surg. 2015;79(3):456–62.

    Article  Google Scholar 

  38. Ross J, Allison S, Vaidya S, Monroe E. Günther Tulip inferior vena cava filter retrieval using a bidirectional loop-snare technique. Diagn Interv Radiol. 2016;22(5):460–2.

    Article  Google Scholar 

  39. Baheti A, Singh R, Nicholson D, et al. IVC filter retrieval: comparing the ease of retrieval of Denali and Tulip filters. J Vasc Interv Radiol. 2017. https://doi.org/10.1016/j.jvir.2016.12.1188.

    Article  Google Scholar 

  40. Braun B. VenaTech convertable vena cava filter system; 2017.

  41. Hohenwalter EJ, Stone JR, O’Moore PV, et al. Multicenter trial of the VenaTech convertible vena cava filter. J Vasc Interv Radiol. 2017;28(10):1353–62.

    Article  Google Scholar 

  42. Novate Medical. Sentry inferior vena cava filter.

  43. Dake MD, Murphy TP, Krämer AH, et al. One-year analysis of the prospective multicenter SENTRY clinical trial: safety and effectiveness of the novate sentry bioconvertible inferior vena cava filter. J Vasc Interv Radiol. 2018. https://doi.org/10.1016/j.jvir.2018.05.009.

    Article  PubMed  Google Scholar 

  44. Mermaid Medical. ANGEL® catheter IVC filter retrieval, finally guaranteed.

  45. Cadavid CA, Gil B, Restrepo A, et al. Pilot study evaluating the safety of a combined central venous catheter and inferior vena cava filter in critically Ill patients at high risk of pulmonary embolism. J Vasc Interv Radiol. 2013;24(4):581–5. https://doi.org/10.1016/j.jvir.2012.12.011.

    Article  PubMed  Google Scholar 

  46. Tapson V, Hazelton J, Myers J, Robertson C, Gilani R, Dunn J. Evaluation of a device combining an inferior vena cava filter and a central venous catheter for preventing. J Vasc Interv Radiol. 2017;28(9):1248–54.

    Article  Google Scholar 

  47. Akhtar MR, Tun JK, Young CJ, Jaffer O, Bunker N, Fotheringham T. Outcomes of Angel Catheter use for pulmonary embolism prophylaxis in polytrauma patients in a Level 1 UK trauma centre. Clin Radiol. 2016. https://doi.org/10.1016/j.crad.2016.06.017.

    Article  Google Scholar 

  48. Akhtar MR, Tun JK, Alchanan R. Broken wings: first reported cases of fractured Angel® catheters, a temporary combined femoral venous catheter and retrievable IVC filter device. Cardiovasc Interv Radiol. 2018;41:1128–333.

    Article  Google Scholar 

  49. Thors A, Muck P. Resorbable inferior vena cava filters: trial in an in vivo porcine model. J Vasc Interv Radiol. 2011;22(3):330–5. https://doi.org/10.1016/j.jvir.2010.11.030.

    Article  PubMed  Google Scholar 

  50. Huang SY, et al. Safety and efficacy of an absorbable filter in the inferior vena cava to prevent pulmonary embolism in swine. Radiology. 2017;285(3):820–9. https://doi.org/10.1148/radiol.2017161880.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Sucher.

Ethics declarations

Conflict of interest

Adam Sucher, Minn Thant, and Hani Abujudeh declare no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Quality and Safety.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 20933 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sucher, A., Thant, M. & Abujudeh, H. A Review of the Currently Available Retrievable and Next Generation Inferior Vena Cava Filters. Curr Radiol Rep 7, 28 (2019). https://doi.org/10.1007/s40134-019-0341-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40134-019-0341-9

Keywords

Navigation