Skip to main content

Advertisement

Log in

State-of-the-Art Imaging in Cardiac Oncology

  • Cardiovascular Imaging (K Ordovas, Section Editor)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Imaging modalities play an important role in the diagnosis and management of cardiotoxicity and cardiac tumors. In this review, we provide an overview of the imaging modalities that are relevant to the field of cardio-oncology.

Recent Findings

Cardiac magnetic resonance provides comprehensive tissue characterization in the assessment of cardiac tumors and cardiomyopathy. The combination of positron emission tomography/computed tomography offers improved localization of lesions, staging, targeting of biopsy and therapy, and greater confidence in interpretation.

Summary

Overall, cardiac imaging plays a critical role in the assessment and management of cardiac tumors either for surgical planning or for initiation of appropriate cancer therapies. For certain higher risk cancer patients and survivors, routine surveillance with cardiac imaging may be warranted so appropriate interventions can be instituted to stabilize or even improve the cardiac dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Recently published papers of particular interest have been highlighted as: • Of importance

  1. Lam KY, Dickens P, Chan AC. Tumors of the heart. A 20-year experience with a review of 12,485 consecutive autopsies. Arch Pathol Lab Med. 1993;117(10):1027–31.

    CAS  PubMed  Google Scholar 

  2. Elbardissi AW, Dearani JA, Daly RC, Mullany CJ, Orszulak TA, Puga FJ, et al. Survival after resection of primary cardiac tumors: a 48-year experience. Circulation. 2008;118(14 Suppl):S7–15.

    Article  PubMed  Google Scholar 

  3. Silverman NA. Primary cardiac tumors. Ann Surg. 1980;191(2):127–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. • Tamene AM, Masri C, Konety SH. Cardiovascular MR imaging in cardio-oncology. Magn Reson Imaging Clin N Am. 2015;23(1):105–16. This is an excellent review paper that highlights the important role of cardiac MRI in evaluation of cardiac masses and monitoring of cancer therapy related cadiotoxicty.

  5. • Motwani M, Kidambi A, Herzog BA, Uddin A, Greenwood JP, Plein S. MR imaging of cardiac tumors and masses: a review of methods and clinical applications. Radiology. 2013;268(1):26–43. This review article describes various MRI sequences used to analyze a cardiac mass.

  6. Takahashi A, Harada M. Multimodal cardiovascular imaging of cardiac tumors. Ann Nucl Cardiol. 2016;2(1):61–7.

    Article  Google Scholar 

  7. Barkhausen J, Hunold P, Eggebrecht H, Schüler WO, Sabin GV, Erbel R, et al. Detection and characterization of intracardiac thrombi on MR imaging. AJR Am J Roentgenol. 2002;179(6):1539–44.

    Article  PubMed  Google Scholar 

  8. Chalian H, O’Donnell JK, Bolen M, Rajiah P. Incremental value of PET and MRI in the evaluation of cardiovascular abnormalities. Insights Imaging. 2016;7(4):485–503.

    Article  PubMed  PubMed Central  Google Scholar 

  9. • Hoffmann U, Globits S, Schima W, Loewe C, Puig S, Oberhuber G, et al. Usefulness of magnetic resonance imaging of cardiac and paracardiac masses. Am J Cardiol. 2003;92(7):890–5. This study demonstrated that certain MRI features differentiated benign vs malignant nature of a cardiac mass.

  10. • Pazos-López P, Pozo E, Siqueira ME, García-Lunar I, Cham M, Jacobi A, et al. Value of CMR for the differential diagnosis of cardiac masses. JACC Cardiovasc Imaging. 2014;7(9):896–905. This study also demonstrated that certain MRI features differentiated benign vs malignant nature of a cardiac mass.

  11. Giusca S, Mereles D, Ochs A, Buss S, André F, Seitz S, et al. Incremental value of cardiac magnetic resonance for the evaluation of cardiac tumors in adults: experience of a high volume tertiary cardiology centre. Int J Cardiovasc Imaging. 2017;33(6):879–88.

    Article  PubMed  Google Scholar 

  12. • Patel R, Lim RP, Saric M, Nayar A, Babb J, Ettel M, et al. Diagnostic performance of cardiac magnetic resonance imaging and echocardiography in evaluation of cardiac and paracardiac masses. Am J Cardiol. 2016;117(1):135–40. This study demonstrated that MRI had higher correlation with histopathological diagnosis of a cardiac mass than echo. 45 out of 65 patients had histopathologic diagnosis of cardiac mass.

  13. Wong TZ, Paulson EK, Nelson RC, Patz EF, Coleman RE. Practical approach to diagnostic CT combined with PET. AJR Am J Roentgenol. 2007;188(3):622–9.

    Article  PubMed  Google Scholar 

  14. • Rahbar K, Seifarth H, Schäfers M, Stegger L, Hoffmeier A, Spieker T, et al. Differentiation of malignant and benign cardiac tumors using 18F-FDG PET/CT. J Nucl Med. 2012;53(6):856–63. PET-CT differentiated benign vs malignant nature of a cardiac mass.

  15. Catalano OA, Rosen BR, Sahani DV, Hahn PF, Guimaraes AR, Vangel MG, et al. Clinical impact of PET/MR imaging in patients with cancer undergoing same-day PET/CT: initial experience in 134 patients–a hypothesis-generating exploratory study. Radiology. 2013;269(3):857–69.

    Article  PubMed  Google Scholar 

  16. Sinha S, Sinha U, Czernin J, Porenta G, Schelbert HR. Noninvasive assessment of myocardial perfusion and metabolism: feasibility of registering gated MR and PET images. AJR Am J Roentgenol. 1995;164(2):301–7.

    Article  CAS  PubMed  Google Scholar 

  17. Partovi S, Kohan A, Rubbert C, Vercher-Conejero JL, Gaeta C, Yuh R, et al. Clinical oncologic applications of PET/MRI: a new horizon. Am J Nucl Med Mol Imaging. 2014;4(2):202–12.

    PubMed  PubMed Central  Google Scholar 

  18. • Nensa F, Tezgah E, Poeppel TD, Jensen CJ, Schelhorn J, Köhler J, et al. Integrated 18F-FDG PET/MR imaging in the assessment of cardiac masses: a pilot study. J Nucl Med. 2015;56(2):255–60. PET-MRI differentiated benign vs malignant nature of a cardiac mass.

  19. Yaddanapudi K, Brunken R, Tan CD, Rodriguez ER, Bolen MA. PET-MR imaging in evaluation of cardiac and paracardiac masses with histopathologic correlation. JACC Cardiovasc Imaging. 2016;9(1):82–5.

    Article  PubMed  Google Scholar 

  20. Lau JM, Laforest R, Nensa F, Zheng J, Gropler RJ, Woodard PK. Cardiac applications of PET/MR imaging. Magn Reson Imaging Clin N Am. 2017;25(2):325–33.

    Article  PubMed  Google Scholar 

  21. Glockner JF. Magnetic resonance imaging and computed tomography of cardiac masses and pseudomasses in the atrioventricular groove. Can Assoc Radiol J. 2018;69(1):78–91.

    Article  PubMed  Google Scholar 

  22. Shin W, Choe YH, Kim SM, Song IY, Kim SS. Detection of cardiac myxomas with non-contrast chest CT. Acta Radiol. 2014;55(3):273–8.

    Article  PubMed  Google Scholar 

  23. Quan H, Liang P, Tan Y. The value of multi-slice CT imaging in cardiac myxomas in comparison with follow-up screening in thoracoscopic surgery. Cell Biochem Biophys. 2015;73(2):565–9.

    Article  CAS  PubMed  Google Scholar 

  24. • van Rosendael AR, Daniëls LA, Dimitriu-Leen AC, Smit JM, van Rosendael PJ, Schalij MJ, et al. Different manifestation of irradiation induced coronary artery disease detected with coronary computed tomography compared with matched non-irradiated controls. Radiother Oncol. 2017;125(1):55–61. This study demonstrated that coronary CTA can be used to screen for significant CAD in long term survivors of lymphoma who received prior radiation therapy.

  25. Küpeli S, Hazirolan T, Varan A, Akata D, Alehan D, Hayran M, et al. Evaluation of coronary artery disease by computed tomography angiography in patients treated for childhood Hodgkin’s lymphoma. J Clin Oncol. 2010;28(6):1025–30.

    Article  PubMed  Google Scholar 

  26. Mulrooney DA, Nunnery SE, Armstrong GT, Ness KK, Srivastava D, Donovan FD, et al. Coronary artery disease detected by coronary computed tomography angiography in adult survivors of childhood Hodgkin lymphoma. Cancer. 2014;120(22):3536–44.

    Article  PubMed  PubMed Central  Google Scholar 

  27. van Leeuwen-Segarceanu EM, Bos WJ, Dorresteijn LD, Rensing BJ, der Heyden JA, Vogels OJ, et al. Screening Hodgkin lymphoma survivors for radiotherapy induced cardiovascular disease. Cancer Treat Rev. 2011;37(5):391–403.

    Article  PubMed  Google Scholar 

  28. Plana JC, Galderisi M, Barac A, Ewer MS, Ky B, Scherrer-Crosbie M, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2014;27(9):911–39.

    Article  PubMed  Google Scholar 

  29. Tan-Chiu E, Yothers G, Romond E, Geyer CE, Ewer M, Keefe D, et al. Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in node-positive, human epidermal growth factor receptor 2-overexpressing breast cancer: NSABP B-31. J Clin Oncol. 2005;23(31):7811–9.

    Article  CAS  PubMed  Google Scholar 

  30. Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Tan TC, et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging. 2012;5(5):596–603.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Negishi K, Negishi T, Hare JL, Haluska BA, Plana JC, Marwick TH. Independent and incremental value of deformation indices for prediction of trastuzumab-induced cardiotoxicity. J Am Soc Echocardiogr. 2013;26(5):493–8.

    Article  PubMed  Google Scholar 

  32. • Ali MT, Yucel E, Bouras S, Wang L, Fei HW, Halpern EF, et al. Myocardial Strain Is Associated with Adverse Clinical Cardiac Events in Patients Treated with Anthracyclines. J Am Soc Echocardiogr. 2016;29(6):522–7. This study demostrated that abnormal myocardial strain at baseline was associated with higher incidence of cardiac death and heart failure over ~ 4 years.

  33. • Rhea IB, Uppuluri S, Sawada S, Schneider BP, Feigenbaum H. Incremental prognostic value of echocardiographic strain and its association with mortality in cancer patients. J Am Soc Echocardiogr. 2015;28(6):667–73. This study demonstrated that abnormal strain at baseline was associated with increased all-cause mortality over ~ 2 years.

  34. Gottdiener JS, Mathisen DJ, Borer JS, Bonow RO, Myers CE, Barr LH, et al. Doxorubicin cardiotoxicity: assessment of late left ventricular dysfunction by radionuclide cineangiography. Ann Intern Med. 1981;94(4 pt 1):430–5.

    Article  CAS  PubMed  Google Scholar 

  35. Choi BW, Berger HJ, Schwartz PE, Alexander J, Wackers FJ, Gottschalk A, et al. Serial radionuclide assessment of doxorubicin cardiotoxicity in cancer patients with abnormal baseline resting left ventricular performance. Am Heart J. 1983;106(4 Pt 1):638–43.

    Article  CAS  PubMed  Google Scholar 

  36. Bellenger NG, Burgess MI, Ray SG, Lahiri A, Coats AJ, Cleland JG, et al. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable? Eur Heart J. 2000;21(16):1387–96.

    Article  CAS  PubMed  Google Scholar 

  37. Naik MM, Diamond GA, Pai T, Soffer A, Siegel RJ. Correspondence of left ventricular ejection fraction determinations from two-dimensional echocardiography, radionuclide angiography and contrast cineangiography. J Am Coll Cardiol. 1995;25(4):937–42.

    Article  CAS  PubMed  Google Scholar 

  38. van Royen N, Jaffe CC, Krumholz HM, Johnson KM, Lynch PJ, Natale D, et al. Comparison and reproducibility of visual echocardiographic and quantitative radionuclide left ventricular ejection fractions. Am J Cardiol. 1996;77(10):843–50.

    Article  PubMed  Google Scholar 

  39. Gulati G, Heck SL, Ree AH, Hoffmann P, Schulz-Menger J, Fagerland MW, et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J. 2016;37(21):1671–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pituskin E, Mackey JR, Koshman S, Jassal D, Pitz M, Haykowsky MJ, et al. Multidisciplinary approach to novel therapies in cardio-oncology research (MANTICORE 101-Breast): a randomized trial for the prevention of trastuzumab-associated cardiotoxicity. J Clin Oncol. 2017;35(8):870–7.

    Article  CAS  PubMed  Google Scholar 

  41. Flett AS, Hayward MP, Ashworth MT, Hansen MS, Taylor AM, Elliott PM, et al. Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation. 2010;122(2):138–44.

    Article  PubMed  Google Scholar 

  42. Neilan TG, Coelho-Filho OR, Shah RV, Feng JH, Pena-Herrera D, Mandry D, et al. Myocardial extracellular volume by cardiac magnetic resonance imaging in patients treated with anthracycline-based chemotherapy. Am J Cardiol. 2013;111(5):717–22.

    Article  CAS  PubMed  Google Scholar 

  43. Nakano S, Takahashi M, Kimura F, Senoo T, Saeki T, Ueda S, et al. Cardiac magnetic resonance imaging-based myocardial strain study for evaluation of cardiotoxicity in breast cancer patients treated with trastuzumab: a pilot study to evaluate the feasibility of the method. Cardiol J. 2016;23(3):270–80.

    Article  PubMed  Google Scholar 

  44. Wassmuth R, Lentzsch S, Erdbruegger U, Schulz-Menger J, Doerken B, Dietz R, et al. Subclinical cardiotoxic effects of anthracyclines as assessed by magnetic resonance imaging-a pilot study. Am Heart J. 2001;141(6):1007–13.

    Article  CAS  PubMed  Google Scholar 

  45. Drafts BC, Twomley KM, D’Agostino R, Lawrence J, Avis N, Ellis LR, et al. Low to moderate dose anthracycline-based chemotherapy is associated with early noninvasive imaging evidence of subclinical cardiovascular disease. JACC Cardiovasc Imaging. 2013;6(8):877–85.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chaosuwannakit N, D’Agostino R, Hamilton CA, Lane KS, Ntim WO, Lawrence J, et al. Aortic stiffness increases upon receipt of anthracycline chemotherapy. J Clin Oncol. 2010;28(1):166–72.

    Article  CAS  PubMed  Google Scholar 

  47. • Armstrong GT, Plana JC, Zhang N, Srivastava D, Green DM, Ness KK, et al. Screening adult survivors of childhood cancer for cardiomyopathy: comparison of echocardiography and cardiac magnetic resonance imaging. J Clin Oncol. 2012;30(23):2876–84. MRI classified adult surviors of childhood cancer with LVEF < 50% better than echo.

  48. Ylänen K, Poutanen T, Savikurki-Heikkilä P, Rinta-Kiikka I, Eerola A, Vettenranta K. Cardiac magnetic resonance imaging in the evaluation of the late effects of anthracyclines among long-term survivors of childhood cancer. J Am Coll Cardiol. 2013;61(14):1539–47.

    Article  PubMed  Google Scholar 

  49. Neilan TG, Coelho-Filho OR, Pena-Herrera D, Shah RV, Jerosch-Herold M, Francis SA, et al. Left ventricular mass in patients with a cardiomyopathy after treatment with anthracyclines. Am J Cardiol. 2012;110(11):1679–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Heidenreich PA, Kapoor JR. Radiation induced heart disease: systemic disorders in heart disease. Heart. 2009;95(3):252–8.

    Article  PubMed  Google Scholar 

  51. Huang YJ, Harrison A, Sarkar V, Rassiah-Szegedi P, Zhao H, Szegedi M, et al. Detection of late radiation damage on left atrial fibrosis using cardiac late gadolinium enhancement magnetic resonance imaging. Adv Radiat Oncol. 2016;1(2):106–14.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Umezawa R, Ota H, Takanami K, Ichinose A, Matsushita H, Saito H, et al. MRI findings of radiation-induced myocardial damage in patients with oesophageal cancer. Clin Radiol. 2014;69(12):1273–9.

    Article  CAS  PubMed  Google Scholar 

  53. Zhuang XF, Yang YM, Sun XL, Liao ZK, Huang J. Late onset radiation-induced constrictive pericarditis and cardiomyopathy after radiotherapy: a case report. Medicine (Baltimore). 2017;96(5):e5932.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Poulin F, Semionov A, Roméo P, Demers P, Pressacco J, Basmadjian A. Extensive radiation-induced heart disease in an adult patient treated for lymphoma as a child. Can J Cardiol. 2011;27(3):390.e1–4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suma Konety.

Ethics declarations

Conflict of interest

Pratik Patel and Suma Konety each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Cardiovascular Imaging.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, P., Konety, S. State-of-the-Art Imaging in Cardiac Oncology. Curr Radiol Rep 7, 6 (2019). https://doi.org/10.1007/s40134-019-0313-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40134-019-0313-0

Keywords

Navigation