Skip to main content
Log in

CT Radiation Exposure: An Overview

  • Radiation Exposure and Reduction (R Semelka, Section Editor)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

Radiation used in CT examinations needs to be selected on image quality criteria, and also take into account the patient’s exposure. X-ray beam quality is controlled by the X-ray tube voltage (kV), and affects the X-ray beam penetration through a given patient as well as the contrast in the resultant image. CT radiation output can be characterized by the volume CTDI (CTDIvol), is controlled by tube output and CT pitch, and determines the random image noise (mottle). The total amount of radiation used to perform an examination is the dose length product (DLP), which is obtained by multiplying CTDIvol with the corresponding scan length, and is related to the corresponding patient radiation exposure. Optimal choices for CT X-ray beam characteristics (i.e., kV, CTDIvol, and DLP) need to take into account patient physical characteristics as well as the diagnostic imaging task at hand. Because CTDI metrics only describe the radiation incident on the patient, patient organ doses need to be obtained using conversion factors that account for patient size and examination scan length. Organ doses can be converted into organ risks, which can be summed to estimate the patient carcinogenic radiation risks. A 20-year-old adult weighing 75 kg, undergoing an abdominal pelvic CT examination [CTDIvol(L) 15 mGy & DLP 700 mGy-cm], has an estimated cancer induction risk of about 0.1 %. Practitioners need to understand radiation risks to be able to identify indicated examinations, where there is expected to be a net patient benefit, and to comply with the ALARA principle where unnecessary radiation is eliminated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mettler FA Jr, Bhargavan M, Faulkner K, et al. Radiologic and nuclear medicine studies in the United States and worldwide: frequency, radiation dose, and comparison with other radiation sources: 1950–2007. Radiology. 2009;253:520–31.

    Article  PubMed  Google Scholar 

  2. Mettler FA Jr, Thomadsen BR, Bhargavan M, et al. Medical radiation exposure in the U.S. in 2006: preliminary results. Health Phys. 2008;95:502–7.

    Article  CAS  PubMed  Google Scholar 

  3. ••NCRP. Ionizing radiation exposure of the population of the United States. NCRP Report 160. National Council on Radiation Protection and Measurements. 2009. Definitive report describing natural background and man made sources of exposure to the population of the United States in 2006.

  4. Lang K, Huang H, Lee DW, Federico V, Menzin J. National trends in advanced outpatient diagnostic imaging utilization: an analysis of the medical expenditure panel survey, 2000–2009. BMC Med Imaging. 2013;13:40.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Boone JM, Hendee WR, McNitt-Gray MF, Seltzer SE. Radiation exposure from CT scans: how to close our knowledge gaps, monitor and safeguard exposure–proceedings and recommendations of the Radiation Dose Summit, sponsored by NIBIB, February 24–25, 2011. Radiology. 2012;265:544–54.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Hricak H, Brenner DJ, Adelstein SJ, et al. Managing radiation use in medical imaging: a multifaceted challenge. Radiology. 2011;258:889–905.

    Article  PubMed  Google Scholar 

  7. McCollough CH, Guimaraes L, Fletcher JG. In defense of body CT. AJR Am J Roentgenol. 2009;193:28–39.

    Article  PubMed Central  PubMed  Google Scholar 

  8. McNitt-Gray MF. AAPM/RSNA Physics Tutorial for Residents: Topics in CT. Radiation dose in CT. Radiographics. 2002;22:1541–53.

    Article  PubMed  Google Scholar 

  9. Elojeimy S, Tipnis S, Huda W. Relationship between radiographic techniques (kilovolt and milliampere-second) and CTDI(VOL). Radiat Prot Dosimetry. 2010;141:43–9.

    Article  PubMed  Google Scholar 

  10. Hausleiter J, Meyer T, Hermann F, et al. Estimated radiation dose associated with cardiac CT angiography. JAMA. 2009;301:500–7.

    Article  CAS  PubMed  Google Scholar 

  11. Amacker NA, Mader C, Alkadhi H, Leschka S, Frauenfelder T. Routine chest and abdominal high-pitch CT: an alternative low dose protocol with preserved image quality. Eur J Radiol. 2012;81:e392–7.

    Article  PubMed  Google Scholar 

  12. Huda W, Mettler FA. Volume CT dose index and dose-length product displayed during CT: what good are they? Radiology. 2011;258:236–42.

    Article  PubMed  Google Scholar 

  13. Huda W, Sterzik A, Tipnis S. X-ray beam filtration, dosimetry phantom size and CT patient dose conversion factors. Phys Med Biol. 2010;55:551–61.

    Article  PubMed  Google Scholar 

  14. McCollough CH, Leng S, Yu L, Cody DD, Boone JM, McNitt-Gray MF. CT dose index and patient dose: they are not the same thing. Radiology. 2011;259:311–6.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Ogden K, Huda W, Scalzetti EM, Roskopf ML. Patient size and X-ray transmission in body CT. Health Phys. 2004;86:397–405.

    Article  CAS  PubMed  Google Scholar 

  16. Primak AN, McCollough CH, Bruesewitz MR, Zhang J, Fletcher JG. Relationship between noise, dose, and pitch in cardiac multi-detector row CT. Radiographics. 2006;26:1785–94.

    Article  PubMed  Google Scholar 

  17. Ende JF, Huda W, Ros PR, Litwiller AL. Image mottle in abdominal CT. Invest Radiol. 1999;34:282–6.

    Article  CAS  PubMed  Google Scholar 

  18. Kruger RL, McCollough CH, Zink FE. Measurement of half-value layer in X-ray CT: a comparison of two noninvasive techniques. Med Phys. 2000;27:1915–9.

    Article  CAS  PubMed  Google Scholar 

  19. Bushberg JT, Seibert JA, Leidholdt EM, Boone JM. The essential physics of medical imaging. 3rd ed. Lippincott: Williams & Wilkins; 2012.

    Google Scholar 

  20. Huda W. Review of radiologic physics. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2010.

    Google Scholar 

  21. Hubbell JH. Photon Cross Sections, Attenuation Coefficients, and Energy Absorption Coefficients from 10 keV to 100 GeV. National Standards Reference Data Service (NSRDS): National Bureau Standards (NBS) 1969; NSRDS-NBS 29:70.

  22. Boone JM, Geraghty EM, Seibert JA, Wootton-Gorges SL. Dose reduction in pediatric CT: a rational approach. Radiology. 2003;228:352–60.

    Article  PubMed  Google Scholar 

  23. ••Yu L, Bruesewitz MR, Thomas KB, Fletcher JG, Kofler JM, McCollough CH. Optimal tube potential for radiation dose reduction in pediatric CT: principles, clinical implementations, and pitfalls. Radiographics. 2011;31:835–48. Excellent overview of how to optimize pediatric CT protocols, and the results obtained at the Mayo Clinic (Rochester, MN) resulting from this exercise.

    Article  PubMed  Google Scholar 

  24. Modica MJ, Kanal KM, Gunn ML. The obese emergency patient: imaging challenges and solutions. Radiographics. 2011;31:811–23.

    Article  PubMed  Google Scholar 

  25. Huda W, Lieberman KA, Chang J, Roskopf ML. Patient size and X-ray technique factors in head computed tomography examinations. II. Image quality. Medical physics. 2004;31:595–601.

    Article  PubMed  Google Scholar 

  26. Huda W, Ravenel JG, Scalzetti EM. How do radiographic techniques affect image quality and patient doses in CT? Semin Ultrasound CT MR. 2002;23:411–22.

    Article  PubMed  Google Scholar 

  27. He W, Marzolf SA, Tipnis S, Huda W. Scan region and organ doses in computed tomography. Radiat Prot Dosim. 2012;148:444–51.

    Article  CAS  Google Scholar 

  28. Huda W. CT dose metrics. Radiology. 2013;267:964–5.

    Article  PubMed  Google Scholar 

  29. Huda W, Sterzik A, Tipnis S, Schoepf UJ. Organ doses to adult patients for chest CT. Med Phys. 2010;37:842–7.

    Article  PubMed Central  PubMed  Google Scholar 

  30. •Huda W, He W. Estimating cancer risks to adults undergoing body CT examinations. Radiat Prot Dosim. 2012;150:168–79. A practical guide of how to estimate adult organ doses, and the corresponding cancer risks, in body CT. This approach accounts of all key factors, including type of CT scan, patient and sex, as well as patient size.

    Article  Google Scholar 

  31. Huda W, Scalzetti EM, Levin G. Technique factors and image quality as functions of patient weight at abdominal CT. Radiology. 2000;217:430–5.

    Article  CAS  PubMed  Google Scholar 

  32. ••ICRU. Report 54 Medical Imaging: The Assessment of Image Quality. Bethesda MD, 1996. The defitive text on Image Quality in Medical Imaging.

  33. Smith EA, Dillman JR, Goodsitt MM, Christodoulou EG, Keshavarzi N, Strouse PJ. Model-based iterative reconstruction: effect on patient radiation dose and image quality in pediatric body CT. Radiology. 2014;270:526–34.

    Article  PubMed Central  PubMed  Google Scholar 

  34. •McCollough CH. Automatic exposure control in CT: are we done yet? Radiology. 2005;237:755–6. Good guide to all of the important issues associated with Automatic Exposure Control (AEC) in CT imaging.

    Article  PubMed  Google Scholar 

  35. Arch ME, Frush DP. Pediatric body MDCT: a 5-year follow-up survey of scanning parameters used by pediatric radiologists. AJR Am J Roentgenol. 2008;191:611–7.

    Article  PubMed  Google Scholar 

  36. Chodick G, Ronckers C, Ron E, Shalev V. The utilization of pediatric computed tomography in a large Israeli Health Maintenance Organization. Pediatr Radiol. 2006;36:485–90.

    Article  PubMed  Google Scholar 

  37. Paterson A, Frush DP, Donnelly LF. Helical CT of the body: are settings adjusted for pediatric patients? AJR Am J Roentgenol. 2001;176:297–301.

    Article  CAS  PubMed  Google Scholar 

  38. Brenner D, Elliston C, Hall E, Berdon W. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol. 2001;176:289–96.

    Article  CAS  PubMed  Google Scholar 

  39. Brody AS, Frush DP, Huda W, Brent RL. Radiation risk to children from computed tomography. Pediatrics. 2007;120:677–82.

    Article  PubMed  Google Scholar 

  40. Huda W, Vance A. Patient radiation doses from adult and pediatric CT. AJR Am J Roentgenol. 2007;188:540–6.

    Article  PubMed  Google Scholar 

  41. Khursheed A, Hillier MC, Shrimpton PC, Wall BF. Influence of patient age on normalized effective doses calculated for CT examinations. Br J Radiol. 2002;75:819–30.

    Article  CAS  PubMed  Google Scholar 

  42. Huda W, Lieberman KA, Chang J, Roskopf ML. Patient size and X-ray technique factors in head computed tomography examinations. I. Radiation doses. Med Phys. 2004;31:588–94.

    Article  PubMed  Google Scholar 

  43. Schiff GD, Kim S, Abrams R, et al. Diagnosing diagnosis errors: lessons from a Multi-institutional Collaborative Project. In: Henriksen K, Battles JB, Marks ES, Lewin DI, editors. Advances in patient safety: from research to implementation (Volume 2: Concepts and Methodology). Rockville: Agency for Healthcare Research & Quality; 2005.

    Google Scholar 

  44. McCollough CH, Bruesewitz MR, McNitt-Gray MF, et al. The phantom portion of the American College of Radiology (ACR) computed tomography (CT) accreditation program: practical tips, artifact examples, and pitfalls to avoid. Med Phys. 2004;31:2423–42.

    Article  PubMed  Google Scholar 

  45. McCollough C, Branham T, Herlihy V, et al. Diagnostic reference levels from the ACR CT Accreditation Program. J Am Coll. Radiol. 2011;8:795–803.

    Article  PubMed  Google Scholar 

  46. Martin CJ, Huda W. Intercomparison of patient CTDI surveys in three countries. Radiat Prot Dosimetry. 2013;153:431–40.

    Article  PubMed  Google Scholar 

  47. ••Huda W, Randazzo W, Tipnis S, Frey GD, Mah E. Embryo dose estimates in body CT. AJR Am J Roentgenol. 2010;194:874–80. A practical hands on guide for estimating embryo doses in CT that accounts for the amount of radiation used, the type of CT scanner, scan length and patient size.

    Article  PubMed  Google Scholar 

  48. Chang KJ, Caovan DB, Grand DJ, Huda W, Mayo-Smith WW. Reducing radiation dose at CT colonography: decreasing tube voltage to 100 kVp. Radiology. 2013;266:791–800.

    Article  PubMed  Google Scholar 

  49. Israel GM, Cicchiello L, Brink J, Huda W. Patient size and radiation exposure in thoracic, pelvic, and abdominal CT examinations performed with automatic exposure control. AJR Am J Roentgenol. 2010;195:1342–6.

    Article  PubMed  Google Scholar 

  50. ACR. ACR–SPR Practice Guideline for imaging pregnant or potentially pregnant adolescents and women with ionizing radiation. Reston: Society of Nuclear Medicine; 2013.

    Google Scholar 

  51. Pregnancy and medical radiation. Annals of the ICRP 2000; 30:iii–viii, 1–43.

  52. HPA. Protection of Pregnant Patients during Diagnostic Medical Exposures to Ionizing Radiation. Advice from the Health Protection Agency, The Royal College of Radiologists, and the College of Radiographers. In. RCE-9, Documents of the HPA, 2009.

  53. DeMarco JJ, Cagnon CH, Cody DD, et al. A Monte Carlo based method to estimate radiation dose from multidetector CT (MDCT): cylindrical and anthropomorphic phantoms. Phys Med Biol. 2005;50:3989–4004.

    Article  CAS  PubMed  Google Scholar 

  54. Huda W, Ogden KM, Lavallee RL, Roskopf ML, Scalzetti EM. In-patient to isocenter KERMA ratios in CT. Med Phys. 2011;38:5362–9.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Huda W, Ogden KM, Lavallee RL, Roskopf ML, Scalzetti EM. KERMA ratios in pediatric CT dosimetry. Pediatr Radiol. 2012;42:527–35.

    Article  PubMed  Google Scholar 

  56. AAPM. Size Specific Dose Estimates (SSDE) in Pediatric and Adult Body CT examinations. Report No. 204 2011.

  57. Huda W, Rowlett WT, Schoepf UJ. Radiation dose at cardiac computed tomography: facts and fiction. J Thorac Imaging. 2010;25:204–12.

    Article  PubMed  Google Scholar 

  58. Li X, Samei E, Segars WP, Sturgeon GM, Colsher JG, Frush DP. Patient-specific dose estimation for pediatric chest CT. Med Phys. 2008;35:5821–8.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Li X, Samei E, Segars WP, et al. Patient-specific radiation dose and cancer risk estimation in CT: part II. Application to patients. Med Phys. 2011;38:408–19.

    Article  PubMed Central  PubMed  Google Scholar 

  60. http://www.impactscan.org/ctdosimetry.htm. Accessed 1 Nov 2014.

  61. Boone JM, Cooper VN 3rd, Nemzek WR, McGahan JP, Seibert JA. Monte Carlo assessment of computed tomography dose to tissue adjacent to the scanned volume. Med Phys. 2000;27:2393–407.

    Article  CAS  PubMed  Google Scholar 

  62. Huda W, Schoepf UJ, Abro JA, Mah E, Costello P. Radiation-related cancer risks in a clinical patient population undergoing cardiac CT. AJR Am J Roentgenol. 2011;196:W159–65.

    Article  PubMed  Google Scholar 

  63. Health Risks from Exposures to Low Levels of Ionizing Radiation;. BEIR VII Phase 2. National Academies Press, Washington, DC; 2006:10.

  64. •Borras C, Huda W, Orton CG. Point/counterpoint. The use of effective dose for medical procedures is inappropriate. Med. Phys. 2010;37:3497–500. Raises the important issues of using the effective dose in medical imaging (for and against).

    Article  PubMed  Google Scholar 

  65. Brenner D, Huda W. Effective dose: a useful concept in diagnostic radiology. Radiat Prot Dosimetry. 2008;128:503–8.

    Article  PubMed  Google Scholar 

  66. •Mettler FA Jr, Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248:254–63. Definitive source of data on patient exposures in all areas of medical imaging including radiography, fluoroscopy, Interventional Radiology, and Nuclear Medicine.

    Article  PubMed  Google Scholar 

  67. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Annals of the ICRP 2007; 37:58.

  68. Deak PD, Smal Y, Kalender WA. Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology. 2010;257:158–66.

    Article  PubMed  Google Scholar 

  69. Huda W, Magill D, He W. CT effective dose per dose length product using ICRP 103 weighting factors. Med Phys. 2011;38:1261–5.

    Article  PubMed  Google Scholar 

  70. http://grants.nih.gov/grants/guide/pa-files/PAR-12-206.html. Accessed 1 Nov 2014.

  71. http://www.cancer.org/. Accessed 1 Nov 2014.

  72. Effects of Ionizing Radiation, UNSCEAR 2006 Report (Volume 1). United Nations Scientific Effects of Atomic Radiation, United Nations, New York; 2008:137.

  73. Brenner DJ, Hall EJ. Cancer risks from CT scans: now we have data, what next? Radiology. 2012;265:330–1.

    Article  PubMed  Google Scholar 

  74. Hendee WR, O’Connor MK. Radiation risks of medical imaging: separating fact from fantasy. Radiology. 2012;264:312–21.

    Article  PubMed  Google Scholar 

  75. Ivanov VK, Tsyb AF, Mettler FA, Menyaylo AN, Kashcheev VV. Methodology for estimating cancer risks of diagnostic medical exposure: with an example of the risks associated with computed tomography. Health Phys. 2012;103:732–9.

    Article  CAS  PubMed  Google Scholar 

  76. Mobbs SF, Muirhead CR, Harrison JD. Risks from Ionizing Radiation, Radiation Protection Division of the Health Protection Agency. HPA-RPD-066 2010.

  77. Huda W. Radiation risks: what is to be done? AJR Am. J. Roentgenol. 2015 (in press).

  78. NCRP. Radiation Risk Estimates for Radiation Protection. National Council on Radiation Protection and Measurements (NCRP) 1993; Report 115.

  79. NCRP. Uncertainties in Fatal Cancer Risk Estimates Used in Radiation Protection. National Council on Radiation Protection and Measurements (NCRP) 1997; Report 126.

  80. NCRP. Evaluation of the Linear-Nothreshold Dose-Response Model for Ionizing Radiation. National Council on Radiation Protection and Measurements (NCRP) 2001; Report 136.

  81. •Brenner DJ, Doll R, Goodhead DT, et al. Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc Natl Acad Sci USA. 2003;100:13761–6. Written by the leading radiobiologists and epidemiologists, this is essential reading for anyone interested in the topic of radiation risks.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Muirhead CR, O’Hagan JA, Haylock RG, et al. Mortality and cancer incidence following occupational radiation exposure: third analysis of the National Registry for Radiation Workers. Br J Cancer. 2009;100:206–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. •Doll R, Wakeford R. Risk of childhood cancer from fetal irradiation. Br J Radiol. 1997;70:130–9. Summarizes what is currently known about a very important study performed over 50 years ago to study the effects of radiation in pregnant patients.

    Article  CAS  PubMed  Google Scholar 

  84. Pearce MS, Salotti JA, Little MP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012;380:499–505.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Mathews JD, Forsythe AV, Brady Z, et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ. 2013;346:f2360.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Brenner DJ, Hall EJ. Computed tomography–an increasing source of radiation exposure. N Engl J Med. 2007;357:2277–84.

    Article  CAS  PubMed  Google Scholar 

  87. International Atomic Energy Agency (IAEA). Report of a consultation on justification of patient exposures in medical imaging. Radiat Prot Dosimetry. 2009;135:137–44.

    Article  Google Scholar 

  88. Malone J, Guleria R, Craven C, et al. Justification of diagnostic medical exposures: some practical issues. Report of an International Atomic Energy Agency Consultation. Br J Radiol. 2012;85:523–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Larson DB, Rader SB, Forman HP, Fenton LZ. Informing parents about CT radiation exposure in children: it’s OK to tell them. AJR Am J Roentgenol. 2007;189:271–5.

    Article  PubMed  Google Scholar 

  90. Lee CI, Haims AH, Monico EP, Brink JA, Forman HP. Diagnostic CT scans: assessment of patient, physician, and radiologist awareness of radiation dose and possible risks. Radiology. 2004;231:393–8.

    Article  PubMed  Google Scholar 

  91. •Semelka RC, Armao DM, Elias J Jr, Huda W. Imaging strategies to reduce the risk of radiation in CT studies, including selective substitution with MRI. J Magn Reson Imaging. 2007;25:900–9. Overview of ways of reducing patient CT doses and risks.

    Article  PubMed  Google Scholar 

  92. Sierzenski PR, Linton OW, Amis ES Jr, et al. Applications of justification and optimization in medical imaging: examples of clinical guidance for computed tomography use in emergency medicine. J Am Coll Radiol. 2014;11:36–44.

    Article  PubMed  Google Scholar 

  93. Lazarus E, Mayo-Smith WW, Mainiero MB, Spencer PK. CT in the evaluation of nontraumatic abdominal pain in pregnant women. Radiology. 2007;244:784–90.

    Article  PubMed  Google Scholar 

  94. Sadigh G, Kelly AM, Cronin P. Challenges, controversies, and hot topics in pulmonary embolism imaging. AJR Am J Roentgenol. 2011;196:497–515.

    Article  PubMed  Google Scholar 

  95. ICRP Publication 105. Radiation protection in medicine. Annals of the ICRP 2007; 37:1–63.

Download references

Acknowledgments

The author would like to express his gratitude to R. Brad Abrahams DO for help with the artwork, and G. Don Frey PhD, Kent M Ogden PhD, and Sameer V. Tipnis PhD for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Huda.

Additional information

This article is part of Topical Collection on Radiation Exposure and Reduction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huda, W. CT Radiation Exposure: An Overview. Curr Radiol Rep 3, 80 (2015). https://doi.org/10.1007/s40134-014-0080-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40134-014-0080-x

Keywords

Navigation