Skip to main content
Log in

Dynamic Behavior of Saturated Poroelastic Continuum by Simplified Formulation of Biot’s Theory

  • Original Paper
  • Published:
Indian Geotechnical Journal Aims and scope Submit manuscript

Abstract

The behavior of saturated, porous media under dynamic or quasi-static loads was firstly formulated by Biot. Based on Biot’s theory, various possible simplifications have been proposed such as neglecting the second time derivative of the relative displacement. In addition, an even more simplified version has been proposed where the inertial terms in the generalized Darcy’s law are neglected as well. This paper aims to explore the advantages and limitations of that simplified formulation with the help of a linear one-dimensional (1D) poroelastic column subjected to periodic dynamic loading. Two non-dimensional parameters which are related to the permeability, excitation frequency, and material properties are introduced, and the analytical solutions are obtained and depicted graphically in cases of varied permeability and frequencies. Subsequently, a schematic diagram is developed to serve as guideline to determine whether the simplification is tenable, or the only meaningful solution is available by complete Biot’s theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

σ ij :

Total stress tensor (tension positive)

\( \alpha \) :

Biot coefficient

δ ij :

Kronecker delta

ɛ ij :

Strain tensor

\( M \) :

Biot modulus

n :

Porosity

\( \rho \) :

Bulk density of mixture

g :

Gravity acceleration

\( w_{i} \) :

Relative displacement

\( q_{i} \) :

Specific flux

ρ a :

Apparent mass density

\( \varOmega \) :

\( M/\left( {E + \alpha^{2} M} \right) \)

\( \beta_{2} \) :

\( \rho_{a} /\rho \)

\( ND_{1} \) :

\( 2\rho \kappa T/\left( {n\pi \hat{T}^{2} } \right) \)

T :

\( 2\pi /\omega \)

\( V_{c}^{2} \) :

\( \left( {E + \alpha^{2} M} \right)/\rho \)

\( \sigma_{ij}^{\prime } \) :

Effective stress tensor (tension positive)

\( p_{f} \) :

Pore pressure (compression positive)

\( \lambda \), \( \mu \) :

Lame constants

\( u_{i} \) :

Solid displacement tensor

\( \zeta \) :

Variation of fluid content

\( e \), \( \theta \) :

Volumetric strains of solid and fluid

\( \rho_{\text{s}} \), \( \rho_{\text{f}} \) :

Real density of solid and fluid

\( \kappa \) :

Intrinsic permeability

\( k \) :

Permeability coefficient

\( \mu_{\text{f}} \) :

Fluid viscosity

\( \omega \) :

Angular frequency

\( \beta_{1} \) :

\( \rho_{f} /\rho \)

\( \bar{z} \) :

z/L

\( ND_{2} \) :

\( \pi^{2} \left( {\hat{T}/T} \right)^{2} \)

\( \hat{T} \) :

\( 2L/V_{\text{c}} \)

E, \( \nu \) :

Elastic modulus and Poisson ratio

References

  1. Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 2(12):155–164

    Article  MATH  Google Scholar 

  2. de Boer R, Ehlers W (1988) Review article a historical review of the formulation of porous media theories. Acta Mech 74:1–8

    Article  Google Scholar 

  3. de Boer R (2004) Theory of porous media—highlights in the historical development and current state. Springer, Berlin

    Google Scholar 

  4. Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J Acoust Soc Am 28(2):168–178

    Article  MathSciNet  Google Scholar 

  5. Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J Acoust Soc Am 28(2):179–191

    Article  MathSciNet  Google Scholar 

  6. Bowen RM (1982) Compressible porous media models by use of the theory of mixtures. Int J Eng Sci 20(6):697–735

    Article  MATH  Google Scholar 

  7. Bowen RM (1980) Incompressible porous media models by use of the theory of mixtures. Int J Eng Sci 18(9):1129–1148

    Article  MATH  Google Scholar 

  8. Ehlers W, Kubik J (1994) On finite dynamic equations for fluid-saturated porous media. Acta Mech 105:101–117

    Article  MathSciNet  MATH  Google Scholar 

  9. Schanz M (2009) Poroelastodynamics: linear models, analytical solutions, and numerical methods. Appl Mech Rev 3(62):1–15

    Google Scholar 

  10. Garg SK, Nayfeh AH, Good AJ (1974) Compressional waves in fluid-saturated elastic porous media. J Appl Phys 45(5):1968–1974

    Article  Google Scholar 

  11. Schanz M, Cheng HD (2000) Transient wave propagation in a one-dimensional poroelastic column. Acta Mech 145(1–4):1–18

    Article  MATH  Google Scholar 

  12. Zienkiewicz OC, Chang CT, Bettess P (1980) Drained undrained, consolidating and dynamic behavior assumptions in soils. Geotechnique 4:385–395

    Article  Google Scholar 

  13. Schanz M, Braunschweig A (2000) Transient wave propagation in a one-dimensional poroelastic column. Acta Mech 145:1–18

    Article  MATH  Google Scholar 

  14. Schanz M, Struckmeier V (2005) Wave propagation in a simplified modelled poroelastic continuum: fundamental solutions and a time domain boundary element formulation. Int J Numer Methods Eng 64(13):1816–1839

    Article  MATH  Google Scholar 

  15. Lubich C (1988) Convolution quadrature and discretized operational calculus. I. Numer Math 52:129–145

    Article  MathSciNet  MATH  Google Scholar 

  16. Lubich C (2004) Convolution quadrature revisited. Numer Math 44:503–514

    Article  MathSciNet  MATH  Google Scholar 

  17. Bowen RM, Lockett RR (1983) Inertial effects in poroelasticity. J Appl Mech 50:334–342

    Article  MATH  Google Scholar 

  18. Zienkiewicz OC, Shiomi T (1984) Dynamic behavior of saturated porous media. The generalized Biot formulation and its numerical solution. Int J Numer Anal Methods Geomech 8:71–96

    Article  MATH  Google Scholar 

  19. Group I C (2006) FLAC3D-fast Lagrangian analysis of continua in 3 dimension. User’s Guide, Minneapolis

    Google Scholar 

  20. Chao H, Yan-Guo Z, Yun-Min C (2010) Numerical simulation of centrifuge-shaking table test on saturated sand. In: International conference on E-product E-service and E-entertainment

  21. Byrne PM, Park S, Beaty M (2004) Numerical modeling of liquefaction and comparison with centrifuge tests. Can Geotech J 41(2):193–211

    Article  Google Scholar 

  22. Bonnet G, Auriault JL (1985) Dynamics of saturated and deformable porous media. In: Boccara N, Daoud M (eds) Physics of finely divided matter. Springer proceedings in physics, vol 5. Springer, Berlin, Heidelberg

    Chapter  Google Scholar 

  23. Kim YK, Kingsbury HB (1979) Dynamic characterization of poroelastic materials. Exp Mech 19(7):252–258

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Hu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (M 21 kb)

Supplementary material 2 (M 6 kb)

Appendix: Analytical Solution in Time Domain by Convolution Quadrature Method

Appendix: Analytical Solution in Time Domain by Convolution Quadrature Method

Generally, the response in time domain can be calculated using the convolution integral as below,

$$ u_{z} \left( {t,z} \right) = \mathop \int \limits_{0}^{t} {\mathcal{L}}^{ - 1} \left\{ {\tilde{u}_{z} \left( {s,z} \right)} \right\}\left( {\tau ,z} \right)f\left( {t - \tau } \right){\text{d}}\tau $$
(24)
$$ p_{f} \left( {{\text{t}},{\text{z}}} \right) = \mathop \int \limits_{0}^{t} {\mathcal{L}}^{ - 1} \left\{ {\tilde{p}_{f} \left( {s,z} \right)} \right\}\left( {\tau ,z} \right)f\left( {t - \tau } \right){\text{d}}\tau $$
(25)

where \( {\mathcal{L}}^{ - 1} \) is the inverse Laplace transform operator and \( s \) is the complex Laplace variable.

We found the response function in the convolution integral (24)–(25) is only available in Laplace domain and force function in time domain and a numerical inverse Laplace transformation is necessary. It is preferable to take the “Convolution Quadrature Method” proposed by Lubich, and this numerical method approximates the convolution integral numerically by a quadrature formula,

$$ u_{z} \left( {n\Delta t} \right) = \mathop \sum \limits_{k = 0}^{n} \omega_{n - k} \left( {\Delta t} \right)f\left( {k\Delta t} \right),\quad n = 0,1, \ldots ,N $$
(26)

where \( N \) is divide time t by time increment \( \Delta t \) and weights \( \omega_{n - k} \left( {\Delta t} \right) \) are determined with the help of Laplace-transformed impulse response function \( \hat{u}_{z} \left( {s,z} \right) \) and a linear multistep method \( \gamma \left( s \right) \) published by Lubich [15, 16], as

$$ \omega_{n} \left( {\Delta t} \right) = \frac{{{\mathcal{R}}^{ - n} }}{L}\mathop \sum \limits_{m = 0}^{L - 1} \hat{u}_{z} \left( {\frac{{\gamma \left( {{\mathcal{R}}e^{{im\frac{2\pi }{L}}} } \right)}}{\Delta t}} \right){\text{e}}^{{ - inm\frac{2\pi }{L}}} $$
(27)

where \( {\mathcal{R}} \) is the radius of a circle in the domain of analyticity of \( \hat{u}_{z} \) and function \( \gamma \left( s \right) \) is the polynomial of the multistep method.

The used parameters can be found in Ref. [13], i.e., \( \gamma \left( s \right) = {\raise0.7ex\hbox{$3$} \!\mathord{\left/ {\vphantom {3 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}} - 2s + {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}s^{2} \), \( L = N \), \( {\mathcal{R}}^{N} = \sqrt \varepsilon \), \( \varepsilon = 10^{ - 10} \), which is tested against the time domain solution for the particular case with infinite permeability and has produced favorable comparison with small time increment \( \Delta t \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Zhang, K. & Li, F. Dynamic Behavior of Saturated Poroelastic Continuum by Simplified Formulation of Biot’s Theory. Indian Geotech J 49, 455–466 (2019). https://doi.org/10.1007/s40098-019-00354-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40098-019-00354-w

Keywords

Navigation