Skip to main content
Log in

Detailed Review on Methodologies Available to Find Preinstrumental Missing Earthquakes of the Present Catalogue with the Relevance to Seismicity Assessment of the Northeast India

  • State of the Art/Practice Paper
  • Published:
Indian Geotechnical Journal Aims and scope Submit manuscript

Abstract

Seismic activity of a region is directly related to information known about earthquakes (EQs) occurred in the region. An uncertainty may always be associated with determination of seismic activity due to incomplete information about historic EQs. For reliable estimation on return period of major to great EQs, accurate information on seismic history is of utmost importance. In addition, for major to great EQs, reliable estimation about return period is utterly dependent on accurate seismic history. The present work provides a review on methodologies which can help in understanding the seismic history of individual EQ based on both on-fault and off-fault evidences as practiced globally. The geomarkers used for such studies are generally preserved in the sediments and thus in geological records. Study of preserved sediments and features can help in understanding the geometry of the fault and nature of EQ phenomenon. In addition, relevance of such methodologies in understanding the revised seismicity as well as change in return period of major to great EQs, based on detailed review of work performed in the northeast India, is also presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Modified after [28]

Fig. 4

Modified after Baro and Kumar [42]

Similar content being viewed by others

References

  1. Wallace RE (1981) Active faults, paleoseismology, and earthquake hazards in the western United States. Earthq Predict 4:209–216

    Google Scholar 

  2. Caputo R (1993) Morphogenic earthquakes: a proposal. Bull INQUA, Neotectonics Commission, vol 16. Stockholm, p 24

  3. McCalpin JP, Nelson AR (1996) Paleoseismology. Academic Press Inc, Cambridge

    Google Scholar 

  4. McCalpin JP, Nelson AR (2009) Introduction to paleoseismology. Int Geophys 95:1–27. https://doi.org/10.1016/s0074-6142(96)80068-4

    Google Scholar 

  5. Bhattacharya F, Rastogi BK, Thakkar MG, Patel RC, Juyal N (2014) Fluvial landforms and their implication towards understanding the past climate and seismicity in the northern Katrol Hill Range, western India. Quat Int 333:49–61

    Article  Google Scholar 

  6. Joshi DD, John B, Kandpal GC, Pande P (2009) Paleoliquefaction features from the Himalayan frontal belt, India and its implications to the status of “central seismic gap”. J South Asia Dis Stud 2(1):139–154

    Google Scholar 

  7. Malik JN, Naik SP, Sahoo S, Okumura K, Mohanty A (2016) Paleoseismic evidence of the CE 1505 (?) and CE 1803 earthquakes from the foothill zone of the Kumaon Himalaya along the Himalayan Frontal Thrust (HFT), India. Tectonophysics. https://doi.org/10.1016/j.tecto.2016.07.026

    Google Scholar 

  8. Malik JN, Sahoo AK, Shah AA, Shinde DP, Juyal N, Singhvi AK (2010) Paleoseismic evidence from trench investigation along Hajipur fault, Himalayan Frontal Thrust, NW Himalaya: implications of the faulting pattern on landscape evolution and seismic hazard. J Struct Geol 32:350–361. https://doi.org/10.1016/j.jsg.2010.01.005

    Article  Google Scholar 

  9. Rajendran CP, Rajendran K, Duarah BP, Baruah S, Earnest A (2004) Interpreting the style of faulting and paleoseismicity associated with the 1897 Shillong, northeast India, earthquake: implications for regional tectonism. Tectonics 23(4):1–12. https://doi.org/10.1029/2003tc001605

    Article  Google Scholar 

  10. Kumar A, Harinarayan NH, Baro O (2017) Nonlinear soil response to ground motions during different earthquakes in Nepal, to arrive at surface response spectra. Nat Hazards 87:13–33. https://doi.org/10.1007/s11069-017-2751-4

    Article  Google Scholar 

  11. Lave J, Yule D, Sapkota S, Basant K, Madden C, Attal M, Pandey R (2005) Evidence for a great medieval earthquake (~ 1100 A.D.) in the Central Himalayas, Nepal. Science 307(5713):1302–1305

    Article  Google Scholar 

  12. Jacoby GC (1997) Application of tree ring analysis to paleoseismology. Rev Geophys 35(2):109–124

    Article  Google Scholar 

  13. Prentice CS, Schwartz DP, Yeats RS (1994) Sponsored byIn. In: Proceedings of the workshop on paleoseismology. California

  14. Vittori E, Labini SS, Leonello S (1991) Palaeoseismology: review of the state-of-the-art. Tectonophysics 193:9–32

    Article  Google Scholar 

  15. Kumar D, Reddy DV, Pandey AK (2016) Paleoseismic investigations in the Kopili Fault Zone of North East India: evidences from liquefaction chronology. Tectonophysics 674:65–75. https://doi.org/10.1016/j.tecto.2016.02.016

    Article  Google Scholar 

  16. Wheeler R (2002) Distinguishing seismic from nonseismic soft-sediment structures: criteria from seismic-hazard analysis. Spec Pap 359 Geol Soc Am 359:1–11. https://doi.org/10.1130/0-8137-2359-0.1

    Google Scholar 

  17. Allen CR (1986) Seismological and paleoseismological techniques of research in active tectonics. In: Wallace RE (ed) Active tectonics: studies in geophysics. Natl Acad Press, Washington, DC, pp 148–154

    Google Scholar 

  18. Colman SM, Pierce L, Birkeland PW (1987) Suggested terminology for quaternary dating methods. Quat Res 28:314–319

    Article  Google Scholar 

  19. Fattahi M, Stokes S (2000) Extending the time range of luminescence dating using red TL (RTL) from volcanic quartz. Radiat Meas 32:479–485. https://doi.org/10.1016/s1350-4487(00)00105-0

    Article  Google Scholar 

  20. Montret M, Miallier D, Sanzell S, Fain J, Pilletre T, Soumana S (1992) TL dating in the Holocene using red TL from quartz. Anc TL 10(3):33–36

    Google Scholar 

  21. Rhodes EJ (2011) Optically stimulated luminescence dating of sediments over the past 200,000 years. Annu Rev Earth Planet Sci 39(1):461–488. https://doi.org/10.1146/annurev-earth-040610-133425

    Article  Google Scholar 

  22. Bowman S (1990) Radiocarbon dating interpreting the past. British Museum Press, London

    Google Scholar 

  23. McKay CP, Long A, Friedmann EI (1986) Radiocarbon dating of open systems with bomb effect. J Geoph Res 91(B3):3836–3840

    Article  Google Scholar 

  24. Brock F, Higham T, Ditchfield P, Ramsey CB (2010) Current pretreatment methods for AMS radiocarbon dating at the oxford radiocarbon accelerator unit (ORAU). Radiocarbon 52(1):103–112

    Article  Google Scholar 

  25. Huntley DJ, Godfrey-Smith DI, Thewalt ML (1985) Optical dating of sediments. Nature 313(5998):105–107

    Article  Google Scholar 

  26. Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84(4):974–1002

    Google Scholar 

  27. Biasi GP, Ii RJW (2006) Estimating surface rupture lenght and magnitude of paleoeartquakes from point measurements of rupture displacement. Bull Seismol Soc Am 96(5):1612–1623

    Article  Google Scholar 

  28. Obermeier SF (1996) Using liquefaction-induced features for paleoseismic analysis. Paleoseismology 62:331–396. https://doi.org/10.1016/s0074-6142(96)80074-x

    Article  Google Scholar 

  29. Seed HB, Idriss IM, Arango I (1983) Evaluation of liquefaction potential using field performance data. J Geotech Eng 109(3):458–482

    Article  Google Scholar 

  30. National Research Council (US) (1985) Liquefaction of soils during earthquakes. The National Academies, Washington, DC. https://doi.org/10.17226/19275

    Google Scholar 

  31. Galli P, Ferreli L (1995) A methodological approach for historical liquefaction research. In: Serva L, Slemmons DB (eds) Perspectives in paleoseismology, vol 6. Ass of Engineering Geologists Spec Publ., pp 35–48

  32. Castilla RA, Audemard FA (2007) Sand blows as a potential tool for magnitude estimation of pre-instrumental earthquakes. J Seismol 11(4):473–487. https://doi.org/10.1007/s10950-007-9065-z

    Article  Google Scholar 

  33. Berryman KR, Ota Y, Hull AG (1989) Holocene paleoseismicity in the fold and thrust belt of the Hikurangi subduction zone, eastern North Island, New Zealand. Tectonophysics 163:185–195

    Article  Google Scholar 

  34. Adams J (1990) Paleoseismicity of the cascadia subduction zone: evidence from turbidites off the Oregon-Washington Margin. Tectonics 9(4):569–583

    Article  Google Scholar 

  35. Vallejo LIG, De Capote R, Cabrera L, Insua JM, Acosta J (2003) Paleoearthquake evidence in Tenerife (Canary Islands) and possible seismotectonic sources. Mar Geophys Res 24:149–160. https://doi.org/10.1007/s11001-004-5883-3

    Article  Google Scholar 

  36. Ishihara K (1985) Stability of natural deposits during earthquakes. In: Proceedings of the 11th ICSMFE, pp 321–376

  37. Hornblow S, Quigley M, Nicol A, Dissen R Van, Wang N (2014) Paleoseismology of the 2010 Mw 7.1 Darfield (Canterbury) earthquake source, Greendale Fault, New Zealand. Tectonophysics 637:178–190. https://doi.org/10.1016/j.tecto.2014.10.004

    Article  Google Scholar 

  38. Rajendran CP, Rajendran K (2001) Characteristics of deformation and past seismicity associated with the 1819 Kutch earthquake, northwestern India. Bull Seismol Soc Am 91(3):407–426

    Article  Google Scholar 

  39. Kumar S, Wesnousky SG, Rockwell TK, Briggs RW, Thakur VC, Jayangondaperumal R (2006) Paleoseismic evidence of great surface rupture earthquakes along the Indian Himalaya. J Geophys Res 111:1–19. https://doi.org/10.1029/2004jb003309

    Google Scholar 

  40. Kayal JR (1998) Seismotectonics of Northeast India: a review. Mem Geol Soc India, pp 55–68

  41. Sil A, Sitharam TG (2013) Site response evaluation of Agartala City using geophysical and geotechnical data. Int J Geotech Earthq Eng 4(2):53–73. https://doi.org/10.4018/ijgee.2013070104

    Article  Google Scholar 

  42. Baro O, Kumar A (2017) Seismic source characterization for the Shillong Plateau in Northeast India. J Seismol 21(5):1229–1249. https://doi.org/10.1007/s10950-017-9664-2

    Article  Google Scholar 

  43. Mittal H, Kumar A, Ramhmachhuani R (2012) Indian National strong motion instrumentation network and site characterization of its stations. Int J Geosci 3(6):1151–1167. https://doi.org/10.4236/ijg.2012.326117

    Article  Google Scholar 

  44. Srivastava HN, Verma M, Bansal BK, Sutar AK (2015) Discriminatory characteristics of seismic gaps in Himalaya. Geomat Nat Hazards Risk 6(3):224–242. https://doi.org/10.1080/19475705.2013.839483

    Article  Google Scholar 

  45. Kayal JR (2008) Microearthquake seismology and seismotectonics of South Asia. McGraw Hill Publication, Noida

    Google Scholar 

  46. Maurin T, Rangin C (2009) Structure and kinematics of the Indo-Burmese Wedge: recent and fast growth of the outer wedge. Tectonics 28(2):1–21. https://doi.org/10.1029/2008tc002276

    Article  Google Scholar 

  47. Wang Y, Sieh K, Tun ST, Lai K-Y, Myint T (2014) Active tectonic and earthquake Myanmar region. J Geophys Res Solid Earth 119:3576–3822. https://doi.org/10.1002/2013jb010762

    Google Scholar 

  48. Kundu B, Gahalaut VK (2013) Tectonic geodesy revealing geodynamic complexity of the Indo-Burmese arc region,North East India. Curr Sci 104(7):920–933

    Google Scholar 

  49. Nath SK, Adhikari MD, Maiti SK, Devaraj N, Srivastava N, Mohapatra LD (2014) Earthquake scenario in West Bengal with emphasis on seismic hazard microzonation of the city of Kolkata, India. Nat Hazards Earth Syst Sci 14:2549–2575. https://doi.org/10.5194/nhess-14-2549-2014

    Article  Google Scholar 

  50. Bilham R, England P (2001) Plateau pop-up during the 1897 Assam earthquake. Nature 410:806–809

    Article  Google Scholar 

  51. Kayal JR, Arefiev SS, Baruah S, Tatevossian R, Gogoi N, Sanoujam M, Gautam JL, Hazarika D, Borah D (2010) The 2009 Bhutan and Assam felt earthquakes (Mw 6.3 and 5.1) at the Kopili fault in the northeast Himalaya region. Geomat Nat Hazards Risk 1(3):273–281. https://doi.org/10.1080/19475705.2010.486561

    Article  Google Scholar 

  52. Srinivasan V (2003) Deciphering differential uplift in Shillong Plateau using remote sensing. J Geol Soc India 612:773–777

    Google Scholar 

  53. Baro O, Kumar A, Ismail-Zadeh A (2018) Seismic hazard assessment of the Shillong Plateau, India. Geomatics Nat Hazards Risk 9(1):841–861

    Article  Google Scholar 

  54. United States Geological Survey, USGS. http://earthquake.usgs.gov/earthquakes/search/. Assessed 6 May 2016

  55. Indian Meteorological Department IMD http://www.imd.gov.in/pages/earthquake_prelim.php. Assessed 6 May 2016

  56. National Disaster Management Authority (NDMA) (2010) Development of probabilistic seismic hazard map of India. Technical report by National Disaster Management Authority, Government of India

  57. Kijko A, Smit A, Sellevoll MA (2016) Estimation of earthquake hazard parameters from incomplete data files. Part III. incorporation of uncertainty of earthquake-occurrence model. Bull Seismol Soc Am 106(3):1210–1222. https://doi.org/10.1785/0120150252

    Article  Google Scholar 

  58. Thingbaijam KKS, Nath SK (2008) Estimation of maximum earthquakes in Northeast India. Pure appl Geophys 165(5):889–901. https://doi.org/10.1007/s00024-008-0334-8

    Article  Google Scholar 

  59. Shanker D, Sharma ML (1998) Estimation of seismic hazard parameters for the Himalayas and its vicinity from complete data files. Pure appl Geophys 152(2):267–279. https://doi.org/10.1007/s000240050154

    Article  Google Scholar 

  60. Sukhija BS, Reddy DV, Kumar D, Nagabhushanam P (2006) Comment on “Interpreting the style of faulting and paleoseismicity associated with the 1897 Shillong, northeast India, earthquake: implications for regional tectonism” by C. P. Rajendran et al. Tectonics. https://doi.org/10.1029/2005tc001852

    Google Scholar 

  61. Shankar D, Sharma ML (1998) Estimation of Seismic Hazard parameters in the Himalayas and its vicinity from its complete data files. Pure Appl Geophys 152:267–279

    Article  Google Scholar 

  62. Honglin HE, Tsukuda E (2003) Recent progresses of active fault research in China. J Geogr 112:489–520

    Article  Google Scholar 

  63. Fujiwara H, Morikawa N, Okumura T, Ishikawa Y, Nojima N (2012) Revision of probabilistic seismic hazard assessment for Japan after the 2011 Tohoku-oki Mega-thrust earthquake (M9.0). In: Proceedings of the 15th world conference on earthquake engineering (15WCEE), vol 6(9), pp 1117–1127

  64. Sukhija BSŁ, Rao MN, Reddy DV, Nagabhushanam P, Hussain S, Chadha RK, Gupta HK (1999) Paleoliquefaction evidence and periodicity of large prehistoric earthquakes in Shillong Plateau, India. Earth Planet Sci Lett 167:269–282

    Article  Google Scholar 

  65. Thomas PJ, Reddy DV, Kumar D, Nagabhushanam P, Sukhija BS, Sahoo RN (2007) Optical dating of liquefaction features to constrain prehistoric earthquakes in Upper Assam,NE India—some preliminary results. Quat Geochronol 2(1–4):278–283. https://doi.org/10.1016/j.quageo.2006.03.013

    Article  Google Scholar 

  66. Reddy DV, Nagabhushanam P, Kumar D, Sukhija BS, Thomas PJ, Pandey AK, Sahoo RN, Ravi Prasad GV, Datta K (2009) The great 1950 Assam earthquake revisited: field evidences of liquefaction and search for paleoseismic events. Tectonophysics 474(3–4):463–472. https://doi.org/10.1016/j.tecto.2009.04.024

    Article  Google Scholar 

  67. Kumar S, Wesnousky SG, Jayangondaperumal R, Nakata T, Kumahara Y, Singh V (2010) Paleoseismological evidence of surface faulting along the northeastern Himalayan front, India: timing, size, and spatial extent of great earthquakes. J Geophys Res 115(12):1–20. https://doi.org/10.1029/2009jb006789

    Google Scholar 

  68. Mishra RL, Singh I, Pandey A, Rao PS, Sahoo HK, Jayangondaperumal R (2016) Paleoseismic evidence of a giant medieval earthquake in the eastern Himalaya. Geophys Res Lett 43(11):5707–5715

    Article  Google Scholar 

  69. Priyanka RS, Jayangondaperumal R, Pandey A, Mishra RL, Singh I, Bhushan R, Srivastava P, Ramachandran S, Shah C, Kedia S, Sharma AK, Bhat GR (2017) Primary surface rupture of the 1950 Tibet-Assam great earthquake along the eastern Himalayan front. India, Scic Rep 7(1):5433

    Article  Google Scholar 

  70. Jayangondaperumal R, Wesnousky SG, Choudhuri BK (2011) Near-surface expression of early to late holocene displacement along the Northeastern Himalayan frontal thrust at Marbang Korong Creek, Arunachal Pradesh, India. Bull Seismol Soc Am 101(6):3060–3064. https://doi.org/10.1785/0120110051

    Article  Google Scholar 

  71. Shroder JF (2014) Earthquake hazard, risk and disasters. Academic Press, Cambridge

    Google Scholar 

  72. Bollinger L, Tapponnier P, Sapkota SN, Klinger Y (2016) Slip deficit in central Nepal: Omen for a repeat of the 1344 AD earthquake? Earth Planets Space 68(1):12

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the INSPIRE Faculty program by the Department of Science and Technology (DST), Government of India for the funding project “Propagation path characterization and determination of in situ slips along different active faults in the Shillong Plateau” ref. no. DST/INSPIRE/04/2014/002617 [IFA14-ENG-104] for providing necessary funding and motivation for the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Borah, N., Naik, S.P. et al. Detailed Review on Methodologies Available to Find Preinstrumental Missing Earthquakes of the Present Catalogue with the Relevance to Seismicity Assessment of the Northeast India. Indian Geotech J 49, 352–366 (2019). https://doi.org/10.1007/s40098-018-0336-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40098-018-0336-0

Keywords

Navigation