Skip to main content
Log in

Seismic Stability Analysis of Municipal Solid Waste Landfills Using Strain Dependent Dynamic Properties

  • Technical Note
  • Published:
Indian Geotechnical Journal Aims and scope Submit manuscript

Abstract

Seismic stability analysis is an integral part of the design of municipal solid waste (MSW) landfills in the areas of high seismic activity. The conventional pseudo-static methods were used to calculate the factor of safety of MSW landfills. However, these methods didn’t consider the mode change behaviour of the landfill, amplification acceleration of the ground motion and also, neglected the damping properties of MSW. The objective of the present study is to develop an integrated methodology that gives the seismic acceleration profile in the landfill as well as the factor of safety and yield acceleration values for a typical side-hill type geometric configuration. Strain-dependent dynamic properties (shear modulus and damping ratio) of MSW are computed through an iterative scheme and the same shear modulus and damping ratio are used to calculate the seismic factor of safety of landfills. Amplification of base acceleration is observed at low-frequency input motions. The maximum shear strain generated in the landfill is significantly higher for low-frequency input motions, since, at lower frequencies, the seismic inertial forces at all depths are in phase. Whereas, at higher frequencies, those are out of phase. The factor of safety values computed using the present method are on the higher side when compared to the conventional pseudo-static method of analysis for certain combination of input parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

B :

Top width of landfill

C a, C p :

Interface cohesion at the base of active and passive wedge respectively

C sw :

Internal cohesion of solid waste

E a, E p :

Resultant inter-wedge force acting on active and passive wedge respectively

E Ha, E Hp :

Horizontal force acting on active and passive wedge respectively, at the inter-wedge

E Va, E Vp :

Vertical force acting on active and passive wedge respectively, at the inter-wedge

F a, F p :

Frictional forces developed at base of active and passive wedge respectively

FS :

Factor of safety of entire waste mass

FS a, FS p :

Factor of safety at the base of active and passive wedge respectively

FS min, FS max, FS avg :

Minimum, maximum and average factor of safety against translational failure

FS V :

Factor of safety at the interface between active and passive wedge

G :

Shear modulus of solid waste

G * :

Complex shear modulus of solid waste

H, H 1 :

Height of landfill components

K * :

Complex wave number

MSW :

Municipal solid waste

N a, N p :

Normal reaction at the base of active and passive wedge respectively

Q Ha, Q Hp :

Horizontal inertia forces on active and passive wedges respectively

T :

Period of lateral shaking

V s :

Shear wave velocity

W a, W p, W t :

Weight of active wedge, passive wedge and total weight of landfill respectively

a h (z, t):

Horizontal acceleration in the waste fill at depth z and time t

g :

Acceleration due to gravity

k:

Wave number

k h :

Seismic acceleration coefficient in horizontal direction

k y :

Yield acceleration coefficient

m a, m p :

Mass of an infinitesimal thin horizontal element in active and passive wedge respectively

t :

Time

u h (z, t):

Horizontal displacement in the waste fill at depth z and time t

z :

Depth from the top of the landfill

α :

Front slope angle

β :

Back slope angle

\(\gamma_{s}\) :

Shear strain

\(\gamma_{sw}\) :

Unit weight of MSW

δ a, δ p :

Interface friction angles at the base of active and passive wedge respectively

\(\eta_{sw}\) :

Viscosity of the solid waste

ξ :

Damping ratio

\(\rho_{sw}\) :

Solid waste density

\(\phi_{sw}\) :

Internal friction angle of solid waste

ω :

Angular frequency of motion = 2π/T

References

  1. Augello AJ, Matasovic N, Bray JD, Kavazanjian E Jr, Seed RB (1995) Evaluation of solid waste landfill performance during the Northridge earthquake. Geotech Spec Publ 54:17–50

    Google Scholar 

  2. Augello AJ, Merry SM (1998) Simplified seismic design procedure for geosynthetic-lined, solid-waste landfills. Geosynth Int 5(1–2):203–235

    Google Scholar 

  3. Matasovic N, Kavazanjian E, Anderson RL (1998) Performance of solid waste landfills in earthquakes. Earthquake Spectra 14(2):319–334

    Article  Google Scholar 

  4. Qian X, Koerner RM, Gray DH (2003) Translational failure analysis of landfills. J Geotech Geoenviron Eng 129(6):506–519

    Article  Google Scholar 

  5. Qian X, Koerner RM (2004) Effect of apparent cohesion on translational failure analyses of landfills. J Geotech Geoenviron Eng 130(1):71–80

    Article  Google Scholar 

  6. Qian X, Koerner RM (2010) Modification to translational failure analysis of landfills incorporating seismicity. J Geotech Geoenviron Eng 136(5):718–727

    Article  Google Scholar 

  7. Savoikar P, Choudhury D (2010) Effect of cohesion and fill amplification on seismic stability of municipal solid waste landfills using limit equilibrium method. Waste Manag Res 28(12):1096–1113

    Article  Google Scholar 

  8. Savoikar P, Choudhury D (2011) Translational seismic failure analysis of MSW landfills using pseudodynamic approach. Int J Geomech 12(2):136–146

    Article  Google Scholar 

  9. Shewbridge SE (1996) Yield acceleration of lined landfills. J Geotech Eng 122(2):156–158

    Article  Google Scholar 

  10. Choudhury D, Savoikar P (2011) Seismic yield accelerations of MSW landfills by pseudo-dynamic approach. Nat Hazards 56(1):275–297

    Article  Google Scholar 

  11. Choudhury D, Savoikar P (2011) Seismic stability analysis of expanded MSW landfills using pseudo-static limit equilibrium method. Waste Manag Res 29(2):135–145

    Article  Google Scholar 

  12. Pain A, Choudhury D, Bhattacharyya SK (2015) Seismic stability of retaining wall–soil sliding interaction using modified pseudo-dynamic method. Geotech Lett 5(1):56–61

    Article  Google Scholar 

  13. Pain A, Choudhury D, Bhattacharyya SK (2016) Seismic uplift capacity of horizontal strip anchors using a modified pseudodynamic approach. Int J Geomech 16(1):04015025. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000471

    Article  Google Scholar 

  14. Pain A, Choudhury D, Bhattacharyya SK (2016) The seismic bearing capacity factor for surface strip footings. Geotech Spec Publ 269:197–206

    Google Scholar 

  15. Pain A, Choudhury D, Bhattacharyya SK (2017) Seismic rotational stability of gravity retaining walls by modified pseudo-dynamic method. Soil Dyn Earthq Eng 94:244–253

    Article  Google Scholar 

  16. Annapareddy VSR, Pain A, Srakar S (2017) Seismic translational failure analysis of MSW landfills using modified pseudo-dynamic approach. Int J Geomech 17(10):04017086

    Article  Google Scholar 

  17. Psarropoulos PN, Tsompanakis Y, Karabatsos Y (2007) Effects of local site conditions on the seismic response of municipal solid waste landfills. Soil Dyn Earthq Eng 27(6):553–563

    Article  Google Scholar 

  18. Hashash YM, Dashti S, Romero MI, Ghayoomi M, Musgrove M (2015) Evaluation of 1-D seismic site response modeling of sand using centrifuge experiments. Soil Dyn Earthq Eng 78:19–31

    Article  Google Scholar 

  19. Hashash YM, Musgrove MI, Harmon JA, Groholski DR, Phillips CA, Park D (2015) DEEPSOIL 6.1, user manual. Board of Trustees of University of Illinois at Urbana-Champaign, Urbana

    Google Scholar 

  20. Ordonez GA (2004) SHAKE2000: A computer program for the 1D analysis of geotechnical earthquake engineering problems. User’s manual, GeoMotions LLC Lacey, Washington USA

  21. Hudson M, Idriss IM, Beikae M (1994) QUAD4M, User manual. Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis

    Google Scholar 

  22. Bray JD, Augello AJ, Leonards GA, Repetto PC, Byrne RJ (1995) Seismic stability procedures for solid-waste landfills. J Geotech Eng 121(2):139–151

    Article  Google Scholar 

  23. Idriss IM, Sun JL (1992) SHAKE91, user manual. Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis

    Google Scholar 

  24. Rathje EM, Bray JD (2001) One-and two-dimensional seismic analysis of solid-waste landfills. Can Geotech J 38(4):850–862

    Article  Google Scholar 

  25. Choudhury D, Savoikar P (2009) Equivalent-linear seismic analyses of MSW landfills using DEEPSOIL. Eng Geol 107(3):98–108

    Article  Google Scholar 

  26. Anbazhagan P, SivakumarBabu GL, Lakshmikanthan P, VivekAnand KS (2016) Seismic characterization and dynamic site response of a municipal solid waste landfill in Bangalore, India. Waste Manag Res 34(3):205–213

    Article  Google Scholar 

  27. Huang Y, Fan G (2016) Engineering geological analysis of municipal solid waste landfill stability. Nat Hazards 84:93–107

    Article  Google Scholar 

  28. Zania V, Psarropoulos PN, Tsompanakis Y (2010) Base sliding and dynamic response of landfills. Adv Eng Softw 41(2):349–358

    Article  MATH  Google Scholar 

  29. Zekkos D, Bray JD, Riemer MF (2008) Shear modulus and material damping of municipal solid waste based on large-scale cyclic triaxial testing. Can Geotech J 45(1):45–58

    Article  Google Scholar 

  30. Ramaiah BJ, Ramana GV, Bansal BK (2016) Field and large scale laboratory studies on dynamic properties of emplaced municipal solid waste from two dump sites at Delhi, India. Soil Dyn Earthq Eng 90:340–357

    Article  Google Scholar 

  31. Ramaiah BJ, Ramana GV, Kavazanjian E Jr, Bansal BK (2016) Dynamic properties of municipal solid waste from a dump site in Delhi, India. Geotech Spec Publ 271:121–130

    Google Scholar 

  32. Choudhury D, Savoikar P (2009) Simplified method to characterize municipal solid waste properties under seismic conditions. Waste Manag 29(2):924–933

    Article  Google Scholar 

  33. MATLAB (2011) Programming software, version 7.13. The Math Works Inc., Natick, Massachusetts, United States

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anindya Pain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pain, A., Annapareddy, V.S.R. & Sarkar, S. Seismic Stability Analysis of Municipal Solid Waste Landfills Using Strain Dependent Dynamic Properties. Indian Geotech J 49, 204–215 (2019). https://doi.org/10.1007/s40098-018-0314-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40098-018-0314-6

Keywords

Navigation