Microstrain and lattice disorder in nanocrystalline titanium dioxide prepared by chemical route and its relation with phase transformation


The microstructure of nanocrystalline titanium dioxide (TiO2), synthesized by chemical route, is studied from X-ray peak profile analysis and transmission electron microscopy. The broadening of the X-ray diffraction peaks indicates the presence of small crystallites with a significant amount of disorder. The progression of broadening at lower annealing temperatures, suggests the decrease in the strain broadening. The nano-TiO2 was found to transform partially to rutile phase from its nanocrystalline anatase phase when annealed at a temperature of 750 °C. No further appreciable change was observed after annealing at higher temperature. The lattice parameters of the anatase phase change non-linearly with temperature. It was found that there is a discontinuous change in the value of crystallite size, microstrain and thermal parameter values accompanying with the phase transformation. The microstrain associated with the nanocrystalline grain is closely associated with thermal disorder and oxygen z-displacement. The value of thermal parameter reveals a significant deviation of the Ti atom from the regular lattice sites. The present study reveals that nanocrystalline anatase TiO2 prepared by chemical route shows significant static disorder, which decreases with the increase in the annealing temperature along with concomitant phase transformation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Fujishima, A., Zhang, X.: Titanium dioxide photocatalysis: present situation and future approaches. CR Chim. 9, 750–760 (2006)

    Google Scholar 

  2. 2.

    Hashimoto, K., Irie, H., Fujishima, A.: TiO2 photocatalysis: a Historical overview and future prospects. Jpn. J. Appl. Phys. 44, 8269–8285 (2005)

    ADS  Google Scholar 

  3. 3.

    Wang, R., Hashimoto, K., Fijishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., Watanabe, T.: Light-induced amphiphilic surfaces. Nature 388, 431–432 (1997)

    ADS  Google Scholar 

  4. 4.

    Sakai, N., Fujishima, A., Watanabe, T., Hashimoto, K.: Quantitative evaluation of the photoinduced hydrophilic conversion properties of TiO2 thin film surfaces by the reciprocal of contact angle. J. Phys. Chem. B. 107, 1028–1035 (2003)

    Google Scholar 

  5. 5.

    Mills, A., Hill, G., Bhopal, S., Parkin, I.P., O’Neill, S.A.: Thick titanium dioxide films for semiconductor photocatalysis. J. Photochem. Photobiol. A 160, 185–194 (2003)

    Google Scholar 

  6. 6.

    Sopyan, I., Watanabe, M., Murasawa, S., Hashimoto, K., Fujishima, A.: An efficient TiO2 thin-film photocatalyst: photocatalytic properties in gas-phase acetaldehyde degradation. J. Photochem. Photobiol. A 98, 79–86 (1996)

    Google Scholar 

  7. 7.

    Matsunaga, T., Tomoda, R., Nakajima, T., Wake, H.: Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol. Lett. 29, 211–214 (1985)

    Google Scholar 

  8. 8.

    Evans, P., Sheel, D.W.: Photoactive and antibacterial TiO2 thin films on stainless steel. Surf. Coat Technol. 201, 9319–9324 (2007)

    Google Scholar 

  9. 9.

    Hart, J.N., Cervini, R., Cheng, Y.B., Simon, G.P., Spiccia, L.: Formation of anatase TiO2 by microwave processing. Sol. Energy Mater. Sol. Cells. 84, 135–143 (2004)

    Google Scholar 

  10. 10.

    Ni, M., Leung, M.K.H., Leung, D.Y.C., Sumathy, K.: A review and recent developments in photocatalytic water-splitting using TiO2for hydrogen production. Ren. Sust. Energy Rev. 11, 401–425 (2007)

    Google Scholar 

  11. 11.

    Dam, T., Jena, S.S., Pradhan, D.K.: Equilibrium state of anatase to rutile transformation of nano-structured titanium dioxide powder using polymer template method. IOP Conf. Ser. Mater. Sci. Eng. 115, 0120381–0120386 (2016)

    Google Scholar 

  12. 12.

    Hanao, D.A.H., Sorrell, C.C.: Review of the anatase to rutile phase transformation. J. Mater. Sci. 46, 855–874 (2011)

    ADS  Google Scholar 

  13. 13.

    Vasquez, G.C., Peche-Herrero, M.A., Maestre, D., Gianoncelli, A., Ramirez-Castellanos, J., Cremades, A., Gonzalez-Calbet, J.M., Piqueras, J.: Laser-induced anatase-to-rutile transition in TiO2 nanoparticles: promotion and inhibition effects by Fe and Al doping and achievement of micropatterning. J. Phys. Chem. C 119, 11965–11974 (2015)

    Google Scholar 

  14. 14.

    Bhatkhande, D.S., Pangarkar, V.G., Beenackers, A.: Photocatalytic degradation for environmental applications: a review. J. Chem. Technol. Biotechnol. 77, 102–116 (2001)

    Google Scholar 

  15. 15.

    Sarah, S.W., Donia, B., Scott, J.A., Amal, R.: The effect of preparation method on the photoactivity of crystalline titanium dioxide particles. Chem. Eng. J. 95, 213–220 (2003)

    Google Scholar 

  16. 16.

    Fotou, G.P., Vemury, S., Pratsinis, S.E.: Synthesis and evaluation of titania powders for photodestruction of phenol. Chem. Eng. Sci. 49, 4939–4948 (1994)

    Google Scholar 

  17. 17.

    Chou, T.C., Ling, T.R., Yang, M.C., Liu, C.C.: Micro and nano scale metal oxide hollow particles produced by spray precipitation in a liquid–liquid system. Mater. Sci. Eng. A 359, 24–30 (2003)

    Google Scholar 

  18. 18.

    Yamabi, S., Imai, H.: Synthesis of rutile and anatase films with high surface areas in aqueous solutions containing urea. Thin Solid Films 434, 86–93 (2003)

    ADS  Google Scholar 

  19. 19.

    Obuchi, E., Sakamoto, T., Nakano, K., Shiraishi, F.: Photocatalytic decomposition of acetaldehyde over TiO2/SiO2 catalyst. Chem. Eng. Sci. 54, 1525–1530 (1999)

    Google Scholar 

  20. 20.

    Yamashita, H., Harada, M., Misaka, J., Takeuchi, M., Ikeue, K., Anpo, M.: Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. J. Photochem. Photobiol. A 148, 257–261 (2002)

    Google Scholar 

  21. 21.

    Zimbone, M., Buccheri, M.A., Cacciato, G., Sanz, R., Rappazzo, G., Boninelli, S., Reitano, R., Romano, L., Privitera, V., Grimaldi, M.G.: Photocatalytical and antibacterial activity of TiO2 nanoparticlesobtained by laser ablation in water. Appl. Catal. B 165, 487–494 (2015)

    Google Scholar 

  22. 22.

    Liu, P., Cai, W., Fang, M., Li, Z., Zeng, H., Hu, J., Luo, X., Jing, W.: Room temperature synthesized rutile TiO2 nanoparticles induced by laser ablation in liquid and their photocatalytic activity. Nanotechnology 20, 2857071 (2009)

    Google Scholar 

  23. 23.

    Barreca, F., Acacia, N., Barletta, E., Spadaro, D., Curro, G., Neri, F.: Small size TiO2 nanoparticles prepared by laser ablation in water. Appl. Surf. Sci. 256, 6408–6412 (2010)

    ADS  Google Scholar 

  24. 24.

    Wu, S., Weng, Z., Liu, X., Yeung, K.W.K., Chu, P.K.: Functionalized TiO2 based nanomaterials for biomedical applications. Adv. Funct. Mater. 24, 5464–5481 (2014)

    Google Scholar 

  25. 25.

    Chen, X., Mao, S.S.: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007)

    Google Scholar 

  26. 26.

    Arimitsu, N., Nakajima, A., Saito, K., Kameshima, Y., Okada, K.: Effects of vacuum ultraviolet light illumination on the residual stress in sol–gel-derived titanium dioxide films. Chem. Lett. 36, 106–107 (2007)

    Google Scholar 

  27. 27.

    Choudhury, B., Choudhury, A.: Local structure modification and phase transformation of TiO2 nanoparticles initiated by oxygen defects, grain size, and annealing temperature. Int. Nano Lett. 3, 55–63 (2013)

    Google Scholar 

  28. 28.

    Tripathi, A.K., Singh, M.K., Mathpal, M.C., Mishra, S.K., Agarwal, A.: Study of structural transformation in TiO2 nanoparticles and its optical properties. J. Alloys Compd. 549, 114–120 (2013)

    Google Scholar 

  29. 29.

    Cullity, B.D., Stock, S.R.: Elements of X-Ray Diffraction. Pearson, Harlow (2013)

    Google Scholar 

  30. 30.

    Chenari, H.M., Seibel, C., Hauschild, D., Reinert, F., Abdollahian, H.: Titanium dioxide nanoparticles: synthesis, x-ray line analysis and chemical composition study. Mater. Res. 19, 1319–1323 (2016)

    Google Scholar 

  31. 31.

    Rajender, G., Giri, P.K.: Strain induced phase formation, microstructural evolution and bandgap narrowing in strained TiO2 nanocrystals grown by ball milling. J. Alloys Compd. 676, 591–600 (2016)

    Google Scholar 

  32. 32.

    Seetharaman, A., Dhanuskodi, S.: Micro-structural, linear and nonlinear optical properties of titania nanoparticles. Spectrochim. Acta Part A 127, 543–549 (2014)

    ADS  Google Scholar 

  33. 33.

    Vives, S., Meunier, C.: Influence of the X-ray diffraction line profile analysis method on the structural and microstructural parameters determination of sol-gel TiO2 powders. Powder Diffr. 24, 205–220 (2009)

    ADS  Google Scholar 

  34. 34.

    Swamy, V., Menzies, D., Muddle, B.C., Kuznetsov, A., Dubrovinsky, L.S., Dai, Q., Dmitriev, V.: Nonlinear size dependence of anatase TiO2 lattice parameters. Appl. Phys. Lett. 88, 2431031 (2006)

    Google Scholar 

  35. 35.

    Edelson, L.H., Glaeser, A.M.: Role of particle substructure in the sintering of monosized titania. J. Am. Ceram. Soc. 71, 225–235 (1988)

    Google Scholar 

  36. 36.

    Kumar, K.N.P., Keizer, K., Burggraaf, A.J.: Stabilization of the porous texture of nanostructured titanic by avoiding a phase transformation. J. Mat. Sci. Lett. 13, 59–61 (1997)

    Google Scholar 

  37. 37.

    Barsoum, M.W.: Fundamentals of Ceramics. Mc-Graw Hill, New York (1997)

    Google Scholar 

  38. 38.

    Bahnemann, D.W.: Ultrasmall metal oxide particles: preparation, photophysical characterization, and photocatalytic properties. Isr. J. Chem. 33, 115–136 (1993)

    Google Scholar 

  39. 39.

    Colombo, D.P., Roussel, K.A., Saeh, J., Skinner, D.E., Cavaleri, J.J., Bowman, R.M.: Femtosecond study of the intensity dependence of electron-hole dynamics in TiO2 nanoclusters. Chem. Phys. Lett. 232, 207–214 (1995)

    ADS  Google Scholar 

  40. 40.

    van Berkum, J.G.M., Sprong, G.J.M., de Keijser, ThH, Delhez, R., Sonneveld, E.J.: The optimum standard specimen for X-ray diffraction line-profile analysis. Powder Diffr. 10, 129–139 (1995)

    ADS  Google Scholar 

  41. 41.

    Hanaor, D.A.H., Assadi, M.H.N., Li, S., Yu, A., Sorrell, C.C.: Ab initio study of phase stability in doped TiO2. Comput. Mech. 50, 185–194 (2012)

    MATH  Google Scholar 

  42. 42.

    Bakardjieva, S., Subrt, J., Stengl, V., Dianez, M.J., Sayagues, M.J.: Photoactivity of anatase–rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase. Appl. Catal. B 58, 193–202 (2005)

    Google Scholar 

  43. 43.

    Ohno, T., Sarukawa, K., Matsumura, M.: Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New J. Chem. 26, 1167–1170 (2002)

    Google Scholar 

  44. 44.

    Testino, A., Bellobono, I.R., Buscaglia, V., Canevali, C., D’Arienzo, M., Polizzi, S., Scotti, R., Morazzoni, F.: Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology. A systematic approach. J. Am. Chem. Soc. 129, 3564–3575 (2007)

    Google Scholar 

  45. 45.

    Ohtani, B., Handa, J., Nishimoto, S., Kagiya, T.: Highly active semiconductor photocatalyst: Extra-fine crystallite of brookite TiO2 for redox reaction in aqueous propan-2-ol and/or silver sulfate solution. Chem. Phys. Lett. 120, 292–294 (1985)

    ADS  Google Scholar 

  46. 46.

    Lutterotti, L., Matthies, S., Wenk, H.R.: MAUD: a friendly Java program for Material Analysis Using Diffraction. IUCR Newsl. CPD 21, 14–15 (1999)

    Google Scholar 

  47. 47.

    Czanderna, A.W., Rao, C.N.R., Honig, J.M.: The anatase-rutile transition. Part 1-kinetics of the transformation of pure anatase. Trans. Faraday Soc. 54, 1069–1073 (1958)

    Google Scholar 

  48. 48.

    Hague, D.C., Mayo, M.J.: Controlling crystallinity during processing of nanocrystalline titania. J. Am. Ceram. Soc. 77, 1957–1960 (1994)

    Google Scholar 

  49. 49.

    Haro-Poniatowski, E., Rodriguez-Talavera, R., Heredia, M.D.C., Cano-Corona, O., Arroyo-Murillo, R.: Crystallization of nanosized titania particles prepared by the sol-gel Process. J. Mater. Res. 9, 2102–2108 (1994)

    ADS  Google Scholar 

  50. 50.

    Sheinkman, A.I., Tymentsev, V.A., Fotiev, A.A.: Titanium dioxide recrystallization stimulated by phase transition. Izv. Akad. Nauk SSSR Neorg. Mater. 20, 1692–1694 (1984)

    Google Scholar 

  51. 51.

    Patra, S., Davoisne, C., Bouyanfif, H., Foix, D., Sauvage, F.: Phase stability frustration on ultrananosized anatase TiO2. Sci Rep 5, 10928 (2015)

    ADS  Google Scholar 

  52. 52.

    Zhang, H., Banfield, J.F.: Thermodynamic analysis of phase stability of nanocrystalline titania. J. Mater. Chem. 8, 2073–2076 (1998)

    Google Scholar 

Download references

Author information




Both the authors have contributed equally in the manuscript.

Corresponding author

Correspondence to Apurba Kanti Deb.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deb, A.K., Chatterjee, P. Microstrain and lattice disorder in nanocrystalline titanium dioxide prepared by chemical route and its relation with phase transformation. J Theor Appl Phys (2020). https://doi.org/10.1007/s40094-020-00382-5

Download citation


  • Nanocrystalline TiO2
  • X-ray powder diffraction
  • Phase transformation
  • Rietveld analysis
  • High-resolution transmission electron microscopy