Anti-corrosion properties of stainless steel 304L coated with Mn-based thin film and annealed with nitrogen flux exposed to saline solution under various temperatures

Abstract

In this work the corrosion resistance of stainless steel 304L coated with Mn-based thin film and post annealed with flow of nitrogen at 723 K in 0.6 M NaCl solution is reported. The latter was performed at three different solution temperatures of 293 K, 313 K and 333 K. X-ray diffraction analysis was used to determine the crystallographical structure and phases of the annealed samples. Atomic force microscope and field emission scanning electron microscope were employed to determine the morphology of the surface of the samples. Corrosion behavior of the samples in the corroding media was studied by means of electrochemical impedance spectroscopy (EIS) and polarization analysis. Results showed that the sample investigated in the 0.6 M NaCl solution at 293 K temperature has the highest corrosion resistance than those studied at higher temperatures. The correctness of the EIS results was confirmed by Kramers–Kronig transformation, while fitting of the data (Nyquist and Bode diagrams) to suitable equivalent electrical circuits showed that the highest corrosion enhancement is achieved for the Mn-based/SS304L sample in the 0.6 M NaCl solution at 293 K temperature, resulting in a 90.57% corrosion inhibition enhancement factor (η%). Polarization measurements also showed that this sample has the lowest corrosion current density, lowest corrosion rate and highest corrosion potential with a 96% corrosion inhibition efficiency factor (PE%). Consistent results are achieved for EIS and polarization measurements which are then correlated with the nanostructure of the films using X-ray diffraction and atomic force microscope analyses.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Elanchezhian, C., Vijaya Ramnath, B., Ramakrishnan, G., Sripada Raghavendra, K.N., Muralidharan, M., Kishore, V.: Review on metal matrix composites for marine applications. Mater. Today Proc. 5, 1211–1218 (2018)

    Google Scholar 

  2. 2.

    Dirisu, J.O., Fayomi, O.S.I., Oyedepo, S.O., Jolayemi, K.J., Moboluwarin, D.M.: Critical evaluation of aluminium dross composites and other potential building ceiling materials. Procedia Manuf. 35, 1205–1210 (2019)

    Google Scholar 

  3. 3.

    Saravanan, C., Subramanian, K., Krishnan, V.A., Sankara Narayanan, R.: Effect of particulate reinforced aluminium metal matrix composite—a review. Mech. Mech. Eng. 19, 23–30 (2015)

    Google Scholar 

  4. 4.

    Abrahami, S.T., de Kok, J.M.M., Terryn, H., Mol, J.M.C.: Towards Cr(VI)-free anodization of aluminum alloys for aerospace adhesive bonding applications: a review. Front. Chem. Sci. Eng. 11, 465–482 (2017)

    Google Scholar 

  5. 5.

    Javidparvar, A.A., Ramezanzadeh, B., Ghasemi, E.: Effect of various spinel ferrite nanopigments modified by amino propyl trimethoxy silane on the corrosion inhibition properties of the epoxy nanocomposites. Corrosion 72, 761–774 (2016)

    Google Scholar 

  6. 6.

    Canepa, E., Stifanese, R., Merotto, L., Traverso, P.: Corrosion behaviour of aluminium alloys in deep-sea environment: a review and the KM3NeT test results. Mar. Struct. 59, 271–284 (2018)

    Google Scholar 

  7. 7.

    Fateh, A., Aliofkhazraei, M., Rezvanian, A.R.: Review of corrosive environments for copper and its corrosion inhibitors. Arab. J. Chem. 13, 481–544 (2017)

    Google Scholar 

  8. 8.

    Bodunrin, M.O., Alaneme, K.K., Chown, L.H.: Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. J. Mater. Res. Technol. 4, 434–445 (2015)

    Google Scholar 

  9. 9.

    Javidparvar, A.A., Naderi, R., Ramezanzadeh, B.: Epoxy-polyamide nanocomposite coating with graphene oxide as cerium nanocontainer generating effective dual active/barrier corrosion protection. Compos. B Eng. 172, 363–375 (2019)

    Google Scholar 

  10. 10.

    Manam, N.S., Harun, W.S.W., Shri, D.N.A., Ghani, S.A.C., Kurniawan, T., Ismail, M.H., et al.: Study of corrosion in biocompatible metals for implants: a review. J. Alloy Compd. 701, 698–715 (2017)

    Google Scholar 

  11. 11.

    Corradi, M., Di Schino, A., Borri, A., Rufini, R.: A review of the use of stainless steel for masonry repair and reinforcement. Constr. Build. Mater. 181, 335–346 (2018)

    Google Scholar 

  12. 12.

    Lai, J.K.L.: A review of precipitation behaviour in AISI type 316 stainless steel. Mater. Sci. Eng. 61, 101–109 (1983)

    Google Scholar 

  13. 13.

    Davison, R.M., Laurin, T.R., Redmond, J.D., Watanabe, H., Semchyshen, M.: A review of worldwide developments in stainless steels. Mater. Des. 7, 111–119 (1986)

    Google Scholar 

  14. 14.

    Loto, R.T.: Pitting corrosion evaluation of austenitic stainless steel type 304 in acid chloride media (PDF Download Available). J. Mater. Environ. 4, 448–459 (2013)

    Google Scholar 

  15. 15.

    Sun, G.F., Zhang, Y.K., Zhang, M.K., Zhou, R., Wang, K., Liu, C.S., et al.: Microstructure and corrosion characteristics of 304 stainless steel laser-alloyed with Cr–CrB2. Appl. Surf. Sci. 295, 94–107 (2014)

    ADS  Google Scholar 

  16. 16.

    Loto, R.T.: Study of the corrosion resistance of type 304L and 316 austenitic stainless steels in acid chloride solution. Orient. J. Chem. 33, 1090–1096 (2017)

    Google Scholar 

  17. 17.

    Huang, C.A., Chang, Y.Z., Chen, S.C.: The electrochemical behavior of austenitic stainless steel with different degrees of sensitization in the transpassive potential region in 1 M H2SO4 containing chloride. Corros. Sci. 46, 1501–1513 (2004)

    Google Scholar 

  18. 18.

    Bankiewicz, D.: Corrosion behaviour of boiler tube materials during combustion of fuels containing Zn and Pb [Academic Dissertation]. Process Chemistry Centre, Department of Chemical Engineering, Abo Akademi University, Turku, Finland, Laboratory of Inoganic Chemistry (2012)

    Google Scholar 

  19. 19.

    Baddoo, N.R.: Stainless steel in construction: a review of research, applications, challenges and opportunities. J. Constr. Steel Res. 64, 1199–1206 (2008)

    Google Scholar 

  20. 20.

    Agarwal, S., Suhane, A.: Study of boiler maintenance for enhanced reliability of system a review. Mater. Today Proc. 4, 1542–1549 (2017)

    Google Scholar 

  21. 21.

    Zhang, H., Zhao, Y.L., Jiang, Z.D.: Effects of temperature on the corrosion behavior of 13Cr martensitic stainless steel during exposure to CO2 and Cl environment. Mater. Lett. 59, 3370–3374 (2005)

    Google Scholar 

  22. 22.

    Jian, L., Huanjun, Z., Ke, W., Xuehui, W.: Corrosion behavior of SS-304 in NaCl solution at different temperatures using electrochemical noise technique. Int. J. Electrochem. Sci. 10, 931–937 (2015)

    Google Scholar 

  23. 23.

    Masalski, J., Gluszek, J., Zabrzeski, J., Nitsch, K., Gluszek, P.: Improvement in corrosion resistance of the 316L stainless steel by means of Al2O3 coatings deposited by the sol–gel method. Thin Solid Films 349, 186–190 (1999)

    ADS  Google Scholar 

  24. 24.

    Shen, G.X., Chen, Y.C., Lin, C.J.: Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol–gel method. Thin Solid Films 489, 130–136 (2005)

    ADS  Google Scholar 

  25. 25.

    Li, M., Luo, S., Zeng, C., Shen, J., Lin, H., Cao, C.: Corrosion behavior of TiN coated type 316 stainless steel in simulated PEMFC environments. Corros. Sci. 46, 1369–1380 (2004)

    Google Scholar 

  26. 26.

    Javidparvar, A.A., Ramezanzade, B., Ghasemi, E.: The effect of oleic acid/silanetreatments of Fe3O4 nanoparticles on the mechanical properties of an epoxy coating, vol. 13, p. Dec. Institute for Color Scienceand Technology, Tehran (2015)

    Google Scholar 

  27. 27.

    Zhang, X., Xiao, G., Jiang, C., Liu, B., Li, N., Zhu, R., et al.: Influence of process parameters on microstructure and corrosion properties of hopeite coating on stainless steel. Corros. Sci. 94, 428–437 (2015)

    Google Scholar 

  28. 28.

    Mohammadloo, H.E., Sarabi, A.A., Alvani, A.A.S., Salimi, R., Sameie, H.: The effect of solution temperature and pH on corrosion performance and morphology of nanoceramic-based conversion thin film. Mater. Corros. 64, 535–543 (2013)

    Google Scholar 

  29. 29.

    Chou, W.J., Yu, G.P., Huang, J.H.: Corrosion behavior of TiN-coated 304 stainless steel. Corros. Sci. 43, 2023–2035 (2001)

    Google Scholar 

  30. 30.

    Ćurković, L., Ćurković, H.O., Salopek, S., Renjo, M.M., Šegota, S.: Enhancement of corrosion protection of AISI 304 stainless steel by nanostructured sol–gel TiO2 films. Corros. Sci. 77, 176–184 (2013)

    Google Scholar 

  31. 31.

    Mahdi Salih, S., Shakir, I.K., Al-Sammarraie, A.M.A.: Comparison of aggressiveness behavior of chloride and iodide solutions on 304 and 304L stainless steel alloys. Mater. Sci. Appl. 8, 12 (2017)

    Google Scholar 

  32. 32.

    Schönleber, M., Klotz, D., Ivers-Tiffée, E.: A method for improving the robustness of linear Kramers–Kronig validity tests. Electrochim. Acta 131, 20–27 (2014)

    Google Scholar 

  33. 33.

    Boukamp, B.A.: Practical application of the Kramers–Kronig transformation on impedance measurements in solid state electrochemistry. Solid State Ionics 62, 131–141 (1993)

    Google Scholar 

  34. 34.

    Khojier, K., Savaloni, H., Sadeghi, Z.: A comparative investigation on growth, nanostructure and electrical properties of copper oxide thin films as a function of annealing conditions. J Theor Appl Phys 8, 116 (2014)

    Google Scholar 

  35. 35.

    Modiri, F., Savaloni, H.: A study of the corrosion of stainless steel 304L coated with a 190 nm-thick manganese layer and annealed with nitrogen flux in a 0.4-mole solution of H2SO4 at different temperatures. J. Theor. Appl. Phys. 14, 21–35 (2019)

    ADS  Google Scholar 

  36. 36.

    Movchan, B.A., Demchishin, A.V.: Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide. Phys. Thin Film Met. Metall. 28, 83 (1969)

    Google Scholar 

  37. 37.

    Savaloni, H., Player, M.A., Gu, E., Marr, G.V.: Influence of substrate temperature, deposition rate, surface texture and material on the structure of uhv deposited erbium films. Vacuum 43, 965–980 (1992)

    ADS  Google Scholar 

  38. 38.

    Savaloni, H., Player, M.A.: Influence of deposition conditions and of substrate on the structure of uhv deposited erbium films. Vacuum 46, 167–179 (1995)

    ADS  Google Scholar 

  39. 39.

    Savaloni, H., Bagheri Najmi, S.: Characteristics of Cu and Zn films deposited on glass and stainless steel substrates at different substrate temperatures and angle of incidence. Vacuum 66, 49–58 (2002)

    ADS  Google Scholar 

  40. 40.

    Jonsson, T., Karlsson, S., Hooshyar, H., Sattari, M., Liske, J., Svensson, J.-E., Johansson, L.-G.: Oxidation after breakdown of the chromium-rich scale on stainless steels at high temperature: internal oxidation. Springer 85, 509–536 (2016)

    Google Scholar 

  41. 41.

    Jankowski, J., Juchniewicz, R.: A four-point method for corrosion rate determination. Corros. Sci. 20, 841–851 (1980)

    Google Scholar 

  42. 42.

    Rocchini, G.: Corrosion rate monitoring by the linear polarization method. Corros. Sci. 34, 2031–2044 (1993)

    Google Scholar 

  43. 43.

    Escrivà-Cerdána, C., Blasco-Tamarita, E., García-Garcíaa, D.M., García-Antón, J., Guenbourb, A.: Temperature effect on the austenitic stainless steel UNS N08031 used in the wet method phosphoric acid production. Chem. Eng. Trans. 32, 1717–1722 (2013)

    Google Scholar 

  44. 44.

    Blasco-Tamarit, E., Igual-Muñoz, A., García Antón, J., García-García, D.: Effect of temperature on the corrosion resistance and pitting behaviour of Alloy 31 in LiBr solutions. Corros. Sci. 50, 1848–1857 (2008)

    Google Scholar 

  45. 45.

    Rahmouni, K., Keddam, M., Srhiri, A., Takenouti, H.: Corrosion of copper in 3% NaCl solution polluted by solphide ions. Corros. Sci. 47, 3249–3266 (2005)

    Google Scholar 

  46. 46.

    Lei, Z., Zhanga, Q., Zhua, X., Maa, D., Maa, F., Songa, Z., Fub, Y.Q.: Corrosion performance of ZrN/ZrO2 multilayer coatings deposited on 304 stainless steel using multi-arc ion plating. Appl. Surf. Sci. 431, 170–176 (2018)

    ADS  Google Scholar 

  47. 47.

    Al-Daraghmeha, M.Y., Hayajneha, M.T., Almomania, M.A.: Resistance of TiO2–ZrO2 nano-composite thin films spin coated on AISI3O4 stainless steel in 3.5 wt% NaCl solution. Mater. Res. 22, e20190014 (2019)

    Google Scholar 

  48. 48.

    Carvalho, J.B.R., Silva, R.S., Cesarino, I., Machado, S.A.S., Eguiluz, K.I.B., Cavalcanti, E.B., Salazar-Banda, G.R.: Influence of the annealing temperature and metal salt precursor on the structural characteristics and anti-corrosion barrier effect of CeO2 sol–gel protective coatings of carbon steel. Ceram. Int. 40, 13437–13446 (2014)

    Google Scholar 

  49. 49.

    Poorqasemi, E., Abootalebi, O., Peikari, M., Haqdar, F.: Investigating accuracy of the Tafel extrapolation method in HCl solutions. Corros. Sci. 51, 1043–1054 (2009)

    Google Scholar 

  50. 50.

    Sorensen, P.A., Kiil, S., Dam-Johansen, K., Weinell, C.E.: Anticorrosive coatings: a review. J. Coat. Technol. Res. 6, 135–176 (2009)

    Google Scholar 

  51. 51.

    Fattah-alhosseini, A., Farahani, H.: Electrochemical behavior of AISI 304 stainless steel in sulfuric solution. J. Mater. Sci. Eng. 10, 4 (2013)

    Google Scholar 

  52. 52.

    Javidparvar, A.A., Ramezanzadeh, B., Ghasemi, E.: The effect of surface morphology and treatment of Fe3O4 nanoparticles on the corrosion resistance of epoxy coating. J. Taiwan Inst. Chem. Eng. 61, 356–366 (2015)

    Google Scholar 

  53. 53.

    Palomino, L.E.M., Aoki, I.V., de Melo, H.G.: Microstructural and electrochemical characterization of Ce conversion layers formed on Al alloy 2024–T3 covered with Cu-rich smut. Electrochim. Acta 51, 5943–5953 (2006)

    Google Scholar 

  54. 54.

    Yoganandan, G., Premkumar, K.P., Balaraju, J.: Evaluation of corrosion resistance and self-healing behavior of zirconium–cerium conversion coating developed on AA2024 alloy. Surf. Coat. Technol. 270, 249–258 (2015)

    Google Scholar 

  55. 55.

    Mahdavian, M., Attar, M.M.: Another approach in analysis of paint coatings with EIS measurement: phase angle at high frequencies. Corros. Sci. 48, 4152–4157 (2006)

    Google Scholar 

  56. 56.

    Hassanzadeh, A.: Validity of dynamic electrochemical impedance spectra of some amine corrosion inhibitors in petroleum/water corrosive mixtures by Kramers–Kronig transformation. Corros. Sci. 49, 1895–1906 (2007)

    Google Scholar 

  57. 57.

    Abdeli, M., Parvini Ahmadi, N., Azari Khosroshahi, R.: Influence of bis-(2-benzothiazolyl)-disulfide on corrosion inhibition of mild steel in hydrochloric acid media. J. Solid State Electrochem. 15, 1867–1873 (2011)

    Google Scholar 

  58. 58.

    Popkirov, G., Schindler, R.N.: A new approach to the problem of “good” and “bad” impedance data in electrochemical impedance spectroscopy. Electrochim. Acta 39, 2025–2030 (1994)

    Google Scholar 

  59. 59.

    Allen, J., Bard, L.R.F.: Electrochemical methods, fundamentals and applications. 2nd Edition (2001). ISBN: 978-471-04372-0

  60. 60.

    Zhang, J., Monteiro, P.J.M.: Validation of resistivity spectra from reinforced concrete corrosion by Kramers–Kronig transformations. Cem. Concr. Res. 31, 603–607 (2001)

    Google Scholar 

  61. 61.

    Achatz, G., Herzog, G.W., Plot, W.H.: Kramers–Kronig transformation of double-layer capacitances. Surf. Technol. 11, 431–441 (1980)

    Google Scholar 

  62. 62.

    Javidparvar, A.A., Naderi, R., Ramezanzadeh, B.: Manipulating graphene oxide nanocontainer with benzimidazole and cerium ions: application in epoxy-based nanocomposite for active corrosion protection. Corros. Sci. 165, 108379 (2020)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hadi Savaloni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Modiri, F., Savaloni, H. Anti-corrosion properties of stainless steel 304L coated with Mn-based thin film and annealed with nitrogen flux exposed to saline solution under various temperatures. J Theor Appl Phys (2020). https://doi.org/10.1007/s40094-020-00381-6

Download citation

Keywords

  • Corrosion
  • Mn thin films
  • Potentiodynamic
  • Stainless steel 304L
  • Electrochemical
  • Impedance spectroscopy
  • Kramers–Kronig transformation