Characterization and antibacterial efficiency of silver nanoparticles biosynthesized by using green algae Enteromorpha intestinalis

Abstract

An ecofriendly and efficient procedure for the synthesis of silver nanoparticles (AgNPs) was performed using aqueous extract of Enteromorpha intestinalis as reducing, capping, and stabilizing agents. AgNPs were characterized by UV spectroscopy, Fourier transform infrared (FTIR), high-resolution transmission electron microscope (HRTEM), and EDX. Moreover, the optimum conditions for the green synthesis were studied and the antimicrobial activity were estimated by agar well diffusion and broth dilution methods. UV vis spectroscopy confirmed the formation of AgNPs due to their surface plasmon resonance. The optimum conditions for the biosynthesis of AgNPs were using 2.5 g or 5 g/100 ml (w/v) of algal biomasses for extraction, and 1 mM of silver ions within 72 h. Transmission electron micrographs showed that AgNPs were spherical in shape and with a mean average size of 9.17 ± 3.2 nm. FTIR revealed the that protein and polysaccharides are responsible for AgNPs synthesis. Additionally, AgNPs exhibited antimicrobial activity against all tested microorganisms. The minimum Inhibitory concentration for all bacteria and Candida albicans ATCC26555 was 6.25 µg/ml except Klebsiella Pneumoniae ATCC70603 and Staphylococcus aureus ATCC4330 was 12.5 µg/ml. Further studies will be recommended to estimate the cytotoxicity of these AgNPs on the human cell line. The future use of algae as green nanofactory will be important in medical applications.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Abou El-Nour, K.M.M., Eftaiha, A., Al-Warthan, A., Ammar, R.A.A.: Synthesis and applications of silver nanoparticles. Arab. J. Chem. 3, 135–140 (2010). https://doi.org/10.1016/j.arabjc.2010.04.008

    CAS  Article  Google Scholar 

  2. 2.

    Burdusel, A.C., Gherasim, O., Grumezescu, A.M., Mogoanta, L., Ficai, A., Andronescu, E.: Biomedical applications of silver nanoparticles: an up-to-date overview (2018). Nanomaterials 8, 681 (2018). https://doi.org/10.3390/nano8090681

    CAS  Article  Google Scholar 

  3. 3.

    Rai, G.: Heavy metal tolerance in algae. In: Rai, L.C., et al. (eds.) Algal Adaptation to Environmental Stresses, Chap. 12. Springer-Verlag, Berlin (2001)

    Google Scholar 

  4. 4.

    De Silva, M.W.R.N., Burrows, E.M.: An experimental assessment of the status of the species Enteromorpha intestinalis (L.) Link Enteromorpha Compressa (L.) Grev. (2009)

  5. 5.

    Messyasz, B., Rybak, A.: The distribution of green algae species from the Ulva genera (syn. Enteromorpha; Chlorophyta) in Polish inland waters (2009)

  6. 6.

    Horincar, V.-B., Parfene, G., Bahrim, G.: Evaluation of bioactive compounds in extracts obtained from three romanian marine algae species. Rom. Biotech. Lett. 16, 71–78 (2011)

    CAS  Google Scholar 

  7. 7.

    Baskar, B.B.: Biosynthesis of silver nanoparticles using Kappa phycus species. IJRPS 3(3), 55–56 (2013)

    Google Scholar 

  8. 8.

    Elumalai, D., Kaleena, P.K., Ashok, K., et al.: Green synthesis of silver nanoparticle using Achyranthes aspera and its larvicidal activity against three major mosquito vectors. Eng. Agric. Environ. Food 9, 1–8 (2016). https://doi.org/10.1016/j.eaef.2015.08.002

    Article  Google Scholar 

  9. 9.

    Thomas, R., Viswan, A., Mathew, J., Radhakrishnan, E.K.: Evaluation of antibacterial activity of silver nanoparticles synthesized by a novel strain of marine Pseudomonas sp. Nano. Biomed. Eng. 4, 139–143 (2012)

    CAS  Google Scholar 

  10. 10.

    Krishnan, R., Arumugam, V., Vasaviah, S.K.: The MIC and MBC of silver nanoparticles against Enterococcus faecalis—a facultative anaerobe. J. Nanomed. Nanotechnol. 6, 285 (2015). https://doi.org/10.4172/2157-7439.1000285

    CAS  Article  Google Scholar 

  11. 11.

    Heath, J.R.: Size-dependent surface-plasmon resonances of bare silver particles. Phys. Rev. B: Condens. Matter 40, 9982–9985 (1989)

    CAS  Article  Google Scholar 

  12. 12.

    Hammud, H.H., El-Shaar, A., Khamis, E., Mansour, E.: Adsorption studies of lead by enteromorpha algae and its silicates bonded material. J.A.C. (2014). https://doi.org/10.1155/2014/205459

    Article  Google Scholar 

  13. 13.

    Akköz, C., Arslan, D., Ünver, A., Özcan, M.M., Yilmaz, B.: Chemical composition, total phenolic and mineral contents of Enteromorpha Intestinalis (L.) Kütz. and Cladophora Glomerata (L.) Kütz. seaweeds. J. Food Biochem. 35(2), 513–523 (2011). https://doi.org/10.1111/j.1745-4514.2010.00399.x

    CAS  Article  Google Scholar 

  14. 14.

    De Reviers, B., Leproux, A.: Characterization of polysaccharides from Enteromorpha intestinalis (L.) link, chlorophyta. Carbohydr. Polym. 22(4), 253–259 (1993). https://doi.org/10.1016/0144-8617(93)90128-q

    Article  Google Scholar 

  15. 15.

    Mubarak, A.D., Sasikala, M., Gunasekaran, M., Thajuddin, N.: Biosynthesis and characterization of silver nanoparticles using marine cyanobacterium, Oscillatoria willei NTDMO1. Dig. J. Nanomater. Bios. 6, 385–390 (2011)

    Google Scholar 

  16. 16.

    Ahmed, E.A., Abdel Hafez, E.H., Ismail, A.F.M., El sonbaty, S.M., Abbas, H.S., Salah El Din, R.A.: Biosynthesis of silver nanoparticles by Spirulina platensis & Nostoc sp. GARJM IV(4), 36–49 (2015)

    Google Scholar 

  17. 17.

    Masarudin, M.J., Cutts, S.M., Evison, B.J., Phillips, D.R., Pigram, B.J.: Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: application to the passive encapsulation of [14C]-doxorubicin. Nanotechnol. Sci. Appl 8, 67–80 (2015)

    CAS  Article  Google Scholar 

  18. 18.

    Rejeeth, C., Nataraj, B., Vivek, R., Sakthivel, M.: Biosynthesis of silver nanoscale particles using Spirulina platensis induce growth-inhibitory effect on human breast cancer cell line MCF-7. J. Med. Aromat. Plants 3, 163 (2014). https://doi.org/10.4172/2167-0412.1000163

    CAS  Article  Google Scholar 

  19. 19.

    Gomaa, E.Z.: Antimicrobial, antioxidant and antitumor activities of silver nanoparticles synthesized by Allium cepa extract: a green approach. J. Genet. Eng. Biotechnol. 15, 49–57 (2017). https://doi.org/10.1016/j.jgeb.2016.12.002

    Article  Google Scholar 

  20. 20.

    Guzmán, M.G., Dille, J., Godet, S.: Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int. J. Chem. Biol. Eng. 2, 04–111 (2009)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Heba S. Abbas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haglan, A.M., Abbas, H.S., Akköz, C. et al. Characterization and antibacterial efficiency of silver nanoparticles biosynthesized by using green algae Enteromorpha intestinalis. Int Nano Lett (2020). https://doi.org/10.1007/s40089-020-00305-x

Download citation

Keywords

  • Enteromorpha intestinalis
  • Silver nanoparticles
  • Antimicrobial activity