Advertisement

Arabian Journal of Mathematics

, Volume 7, Issue 2, pp 77–90 | Cite as

Weighted majorization inequalities for n-convex functions via extension of Montgomery identity using Green function

  • Andrea Aglić Aljinović
  • Asif R. Khan
  • Josip E. Pečarić
Open Access
Article
  • 211 Downloads

Abstract

New identities and inequalities are given for weighted majorization theorem for n-convex functions by using extension of the Montgomery identity and Green function. Various bounds for the reminders in new generalizations of weighted majorization formulae are provided using Čebyšev type inequalities. Mean value theorems are also discussed for functional related to new results.

Mathematics Subject Classification

26A51 26D15 26D20 

Notes

References

  1. 1.
    Aglić Aljinović, A.; Pečarić, J.; Vukelić, A.: On some Ostrowski type inequalities via Montgomery identity and Taylor’s formula II. Tamkang J. Math. 36(4), 279–301 (2005)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Aglić Aljinović, A.; Khan, A.R.; Pečarić, J.E.: Weighted majorization theorems via generalization of Taylor’s formula. J. Inequal. Appl. 2015(196), 1–22 (2015)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Cerone, P.; Dragomir, S.S.: Some new Owstrowski-type bounds for the Čebyšev functional and applications. J. Math. Inequal. 8(1), 159–170 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Fuchs, L.: A new proof of an inequality of Hardy–Littlewood–Polya. Mat. Tidsskr B, 53–54 (1947)zbMATHGoogle Scholar
  5. 5.
    Hardy, G.H.; Littlewood, J.E.; Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1978)zbMATHGoogle Scholar
  6. 6.
    Jakšetić, J.; Pečarić, J.: Exponential convexity method. J. Convex Anal. 20(1), 181–197 (2013)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Jensen, J.L.W.V.: Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 30, 175–193 (1906)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Khan, A.R.; Pecaric, J.; Praljak, M.: Popoviciu type inequalities for \(n\) convex functions via extension of Montgomery identity. Analele Stiintifice ale Universitatii Ovidius Constanta (to appear) Google Scholar
  9. 9.
    Khan, A.R.; Latif, N.; Pečarić, J.E.: Exponential convexity for majorization. J. Inequal. Appl. 2012(105), 1–13 (2012)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Khan, A.R.; Pečarić, J.E.; Varošanec, S.: Popoviciu type characterization of positivity of sums and integrals for convex functions of higher order. J. Math. Inequal. 7(2), 195–212 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Marshall, A.W.; Olkin, I.; Arnold, B.C.: Inequalities: Theory of Majorization and its Applications, 2nd edn. Springer, New York (2011)CrossRefzbMATHGoogle Scholar
  12. 12.
    Mitrinović, D.S.: Analytic Inequalities. Springer, Berlin (1970). (In cooperation with P. M. Vasic)CrossRefzbMATHGoogle Scholar
  13. 13.
    Mitrinović, D.S.; Pečarić, J.E.; Fink, A.M.: Inequalities for Functions and Their Integrals and Derivatives. Kluwer Academic Publishers, Dordrecht (1994)zbMATHGoogle Scholar
  14. 14.
    Niculescu, C.P.; Persson, L.E.: Convex Functions and Their Applications. A Contemporary Approach, CMS Books in Mathematics, vol. 23. Springer, New York (2006)CrossRefzbMATHGoogle Scholar
  15. 15.
    Pečarić, J.: On the Čebyšev inequality. Bul. Inst. Politehn. Timisoara 25(39), 10–11 (1980)zbMATHGoogle Scholar
  16. 16.
    Pečarić, J.E.: On some inequalities for functions with nondecreasing increments. J. Math. Anal. Appl. 98(1), 188–197 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Pečarić, J.: On Jessenâs inequality for convex functions, III. J. Math. Anal. Appl. 156, 231–239 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Pečarić, J.; Perić, J.: Improvements of the Giaccardi and the Petrović inequality and related Stolarsky type means. An. Univ. Craiova Ser. Mat. Inform. 39(1), 65–75 (2012)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Pečarić, J.E.; Proschan, F.; Tong, Y.L.: Convex Functions, Partial Orderings and Statistical Applications. Academic Press, New York (1992)zbMATHGoogle Scholar
  20. 20.
    Popoviciu, T.: Notes sur les fonctions convexes d’orde superieur III. Mathematica (Cluj) 16, 74–86 (1940)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Popoviciu, T.: Notes sur les fonctions convexes d’orde superieur IV. Disqusitiones Math. 1, 163–171 (1940)Google Scholar
  22. 22.
    Popoviciu, T.: Les fonctions convexes. Herman and Cie, Editeurs, Paris (1944)zbMATHGoogle Scholar
  23. 23.
    Robert, A.W.; Varberg, D.E.: Convex Functions. Academic Press, New York (1973)zbMATHGoogle Scholar
  24. 24.
    Widder, D.V.: Completely convex function and Lidstone series. Trans. Am. Math. Soc. 51, 387–398 (1942)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Applied Mathematics, Faculty of Electrical Engineering and ComputingUniversity of ZagrebZagrebCroatia
  2. 2.Department of Mathematics, Faculty of ScienceUniversity of KarachiKarachiPakistan
  3. 3.Faculty of Textile TechnologyUniversity of ZagrebZagrebCroatia

Personalised recommendations