Calculation of BAS-TR imaging plate responses to carbon and titanium ion beams


We calculate BAS-TR imaging plate (IP) responses to laser-accelerated heavy ion beams such as carbon ion beam and titanium ion beam. We introduce two theoretical models widely used for the prediction of an IP response. We perform Monte Carlo simulations based on these two models, and compare the predictions with the available experimental data. Our calculations of the IP response to carbon ions show discrepancy in the location of the maximum IP response, while those to titanium ions present a different slope in the IP response curve. We find that both the linear and the exponential models are insufficient to explain the measured IP responses to carbon and titanium ion beams, and attempt to explain the reason for these differences.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    D. Doria et al., Calibration of BAS-TR image plate response to high energy (3–300 MeV) carbon ions. Rev. Sci. Instrum. 86, 123302 (2015)

    ADS  Article  Google Scholar 

  2. 2.

    Refer to FujiFilm BAS-2500 user manual

  3. 3.

    T. Bonnet et al., Response functions of Fuji imaging plates to monoenergetic protons in the energy range 0.6–3.2 MeV. Rev. Sci. Instrum. 84, 013508 (2013)

    ADS  Article  Google Scholar 

  4. 4.

    A. Mančić et al., Absolute calibration of photostimulable image plate detectors used as (0.5–2.0 MeV) high-energy proton detectors. Rev. Sci. Instrum. 79, 073301 (2008)

    ADS  Article  Google Scholar 

  5. 5.

    I.W. Choi et al., Absolute calibration of a time-of-flight spectrometer and imaging plate for the characterization of laser-accelerated protons. Meas. Sci. Technol. 20, 115112 (2009)

    ADS  Article  Google Scholar 

  6. 6.

    C.G. Freeman et al., Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plate detectors for protons, deuterons, and alpha particles. Rev. Sci. Instrum. 82, 073301 (2011)

    ADS  Article  Google Scholar 

  7. 7.

    K.A. Tanaka et al., Calibration of imaging plate for high energy electron spectrometer. Rev. Sci. Instrum. 76, 013507 (2005)

    ADS  Article  Google Scholar 

  8. 8.

    H. Chen et al., Absolute calibration of image plates for electrons at energy between 100 keV and 4 MeV. Rev. Sci. Instrum. 79, 033301 (2008)

    ADS  Article  Google Scholar 

  9. 9.

    G. Boutoux et al., Study of imaging plate detector sensitivity to 5–18 MeV electrons. Rev. Sci. Instrum. 86, 113304 (2015)

    ADS  Article  Google Scholar 

  10. 10.

    N. Nakanii et al., Absolute calibration of imaging plate for GeV electrons. Rev. Sci. Instrum. 79, 066102 (2008)

    ADS  Article  Google Scholar 

  11. 11.

    T. Bonnet et al., Response functions of imaging plates to photons, electrons and 4He particles. Rev. Sci. Instrum. 84, 103510 (2013)

    ADS  Article  Google Scholar 

  12. 12.

    J. Strehlow et al., The response function of Fujifilm BAS-TR imaging plates to laser-accelerated titanium ions. Rev. Sci. Instrum. 90, 083302 (2019)

    ADS  Article  Google Scholar 

  13. 13.

    B. Hidding et al., Novel method for characterizing relativistic electron beams in a harsh laser-plasma environment. Rev. Sci. Instrum. 78, 083301 (2007)

    ADS  Article  Google Scholar 

  14. 14.

    T. Bonnet et al., in SPIE Optics + Optoelectronics (SPIE, 2013), p. 7

  15. 15.

    N. Rabhi et al., Calibration of imaging plate detectors to mono-energetic protons in the range 1–200 MeV. Rev. Sci. Instrum. 88, 113301 (2017)

    ADS  Article  Google Scholar 

  16. 16.

    N. Rabhi et al., Calibration of imaging plates to electrons between 40 and 180 MeV. Rev. Sci. Instrum. 87, 053306 (2016)

    Article  Google Scholar 

  17. 17.

    J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM—the stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B 268, 1818 (2010)

    ADS  Article  Google Scholar 

  18. 18.

    H. Paul, D. Sánchez-Parcerisa, A critical overview of recent stopping power programs for positive ions in solid elements. Nucl. Instrum. Methods Phys. Res. Sect. B 312, 110 (2013)

    ADS  Article  Google Scholar 

  19. 19.

    W. Bang et al., Temperature measurements of fusion plasmas produced by petawatt laser-irradiated D2-3He or CD4-3He clustering gases. Phys. Rev. Lett. 111, 055002 (2013)

    ADS  Article  Google Scholar 

  20. 20.

    K. Zeil et al., Absolute response of Fuji imaging plate detectors to picosecond-electron bunches. Rev. Sci. Instrum. 81, 013307 (2010)

    ADS  Article  Google Scholar 

  21. 21.

    S. Singh et al., Absolute calibration of imaging plate detectors for electron kinetic energies between 150 keV and 1.75 MeV. Rev. Sci. Instrum. 88, 075105 (2017)

    ADS  Article  Google Scholar 

  22. 22.

    A. Alejo et al., Characterisation of deuterium spectra from laser driven multi-species sources by employing differentially filtered image plate detectors in Thomson spectrometers. Rev. Sci. Instrum. 85, 093303 (2014)

    ADS  Article  Google Scholar 

  23. 23.

    B.R. Maddox et al., High-energy X-ray backlighter spectrum measurements using calibrated image plates. Rev. Sci. Instrum. 82, 023111 (2011)

    ADS  Article  Google Scholar 

  24. 24.

    H. Ohuchi, A. Yamadera, Dependence of fading patterns of photo-stimulated luminescence from imaging plates on radiation, energy, and image reader. Nucl. Instrum. Methods Phys. Res. Sect. A 490, 573 (2002)

    ADS  Article  Google Scholar 

  25. 25.

    J. Won et al., Monte Carlo study of imaging plate response to laser-driven aluminum ion beams. Appl. Sci. 11, 820 (2021)

    Article  Google Scholar 

Download references


This work was supported by NRF-2018R1C1B6001580 and in part by IBS-R012-D1. W. B. was partly supported by the GIST Research Institute (GRI) grant funded by the GIST in 2020.

Author information



Corresponding author

Correspondence to W. Bang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Won, J., Song, J. & Bang, W. Calculation of BAS-TR imaging plate responses to carbon and titanium ion beams. J. Korean Phys. Soc. (2021).

Download citation


  • Imaging plate
  • BAS-TR
  • IP response
  • Heavy ion beams