Finding the cause of degradation of low-temperature oxide thin-film transistors

Abstract

We report the cause of degradation of low-temperature amorphous indium-gallium-zinc-oxide (a-IGZO) coplanar thin-film transistors (TFTs). As the deposition temperature of the buffer layer was changed from 400 to 200 °C, the field-effect mobility decreased considerably from 15 to 3 cm2 V−1 s−1, the subthreshold swing (SS) increased from ~ 150 to 280 mV dec−1, the threshold voltage shift (ΔVth) under negative bias temperature stress (NBTS) increased from − 0.27 to − 0.33 V, and ΔVth under a positive bias temperature stress (PBTS) increased significantly from 0 to 4.9 V. From the results of high-resolution transmission electron microscopy (HR-TEM) and X-ray reflectivity (XRR), the poor roughness created by sputtering damage of the interface between the gate insulator (GI) and the a-IGZO is the cause of degradation. In addition, through an atomic probe tomography (APT) analysis, the reason low-temperature TFTs have poorer PBTS stability than NBTS is carefully to be due to zinc (Zn)-related defects that create ionized oxygen vacancies. Based on these results, we introduce strategies for realizing low-temperature oxide TFTs using vacuum process. Please confirm if the author names are presented accurately and in the correct sequence as given name, middle name/initial, family name. Also, kindly confirm the details in the metadata are correct. We confirmed all author names. Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary. We checked all authors and their affiliations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    E. Fortunato, P. Barquinha, R. Martins, Adv. Materi. 24, 2945 (2012)

    Article  Google Scholar 

  2. 2.

    H. Shin et al., SID Symp. Dig. Tec. Pap. 46, 53 (2015)

    Article  Google Scholar 

  3. 3.

    M. Lopes et al., Appl. Phys. Lett. 95, 063502 (2009)

    ADS  Article  Google Scholar 

  4. 4.

    C. Chen et al., J. Soc. Info. Disp. 17, 525 (2009)

    Article  Google Scholar 

  5. 5.

    M. Kim et al., Nat. Mater. 10, 382 (2011)

    ADS  Article  Google Scholar 

  6. 6.

    Y. Kim et al., Nature 489, 128 (2012)

    ADS  Article  Google Scholar 

  7. 7.

    J. Seo et al., Sci. Rep. 3, 2085 (2013)

    Article  Google Scholar 

  8. 8.

    C.W. Shih et al., IEEE Electron Dev. Lett. 40, 909 (2019)

    ADS  Article  Google Scholar 

  9. 9.

    J. Li et al., IEEE Trans. Electron Dev. 66, 4205 (2019)

    ADS  Article  Google Scholar 

  10. 10.

    K. Nomura et al., Nature 432, 488 (2004)

    ADS  Article  Google Scholar 

  11. 11.

    H. Yabuta et al., Appl. Phys. Lett. 89, 112123 (2006)

    ADS  Article  Google Scholar 

  12. 12.

    T. Kamiya, K. Nomura, H. Hosono, Sci. Tech. Adv. Mater. 11, 044305 (2010)

    Article  Google Scholar 

  13. 13.

    M. Mativenga et al., IEEE Electron Dev. Lett. 32, 170 (2011)

    ADS  Article  Google Scholar 

  14. 14.

    C. Wu et al., Dig. Tech. Pap. SID Int. Symp. 44, 97 (2013)

    Article  Google Scholar 

  15. 15.

    U. Lee et al., IEEE Electron Dev. Lett. 33, 812 (2012)

    ADS  Article  Google Scholar 

  16. 16.

    S. Choi, M. Han, IEEE Electron Dev. Lett. 33, 396 (2012)

    ADS  Article  Google Scholar 

  17. 17.

    C. Ha et al., SID Symp. Dig. Tech. Pap. 46, 1020 (2015)

    Article  Google Scholar 

  18. 18.

    J. Chung et al., Nanoscale Res. Lett. 14, 165 (2019)

    ADS  Article  Google Scholar 

  19. 19.

    A. Rahaman et al., IEEE J. Electron Dev. Soc. 7, 655 (2019)

    Article  Google Scholar 

  20. 20.

    H. Jeong et al., Nanomaterials 10, 1165 (2020)

    Article  Google Scholar 

  21. 21.

    H. Jeong et al., Appl. Phys. Lett. 104, 022115 (2014)

    ADS  Article  Google Scholar 

  22. 22.

    C.Y. Kagan, P.W.E. Andry, Thin Film Transistors (Dekker, New York, 2003), p. p87

    Google Scholar 

  23. 23.

    M. Herbig, P. Choi, D. Raabe, Ultramicroscopy 153, 32 (2015)

    Article  Google Scholar 

  24. 24.

    S. Kim et al., Ultramicroscopy 190, 30 (2018)

    Article  Google Scholar 

  25. 25.

    R. Gurwitz et al., J. Appl. Phys. 115, 1 (2014)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ho-young Jeong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jeong, Hy., Nam, Sh., Park, Ks. et al. Finding the cause of degradation of low-temperature oxide thin-film transistors. J. Korean Phys. Soc. 78, 284–289 (2021). https://doi.org/10.1007/s40042-021-00069-3

Download citation

Keywords

  • Low-temperature
  • Oxide TFTs
  • Sputtering damage
  • Zn-related defects
  • Atomic probe tomography (APT)