Abstract
\(^{171} \mathrm{Yb}^{+}\)ions were trapped in a quadrupole ion trap. A mode-locked pulse laser at 355 nm was used to generate a frequency comb to drive a Raman transition between the ground hyperfine qubit states of the Doppler cooled ion. Qubit transitions were driven in co-propagating and counter propagating laser beam geometries. In the co-propagating geometry, the coherence time and the fidelity of gate operations were obtained. By taking advantage of the phonon number sensitivity of the Rabi frequency in the counter-propagating geometry, we measured the center of mass temperature of the trapped ion near the Doppler limit which can be used for general thermometry in the ion trap experiment.
This is a preview of subscription content, access via your institution.






References
- 1.
W. Paul, Rev. Mod. Phys. 62, 531 (1990). https://doi.org/10.1103/RevModPhys.62.531
- 2.
P. Ghosh, P. Ghosh, Ion Traps, International Series of Monograph (Clarendon Press, Oxford, 1995)
- 3.
S.M. Brewer, J.-S. Chen, A.M. Hankin, E.R. Clements, C.W. Chou, D.J. Wineland, D.B. Hume, D.R. Leibrandt, Phys. Rev. Lett. 123, 033201 (2019). https://doi.org/10.1103/PhysRevLett.123.033201
- 4.
S. Debnath, N.M. Linke, C. Figgatt, K.A. Landsman, K. Wright, C. Monroe, Nature 536, 63 (2016). https://doi.org/10.1038/nature18648
- 5.
D. Gangloff, A. Bylinskii, I. Counts, W. Jhe, V. Vuletić, Nat. Phys. 11, 915 (2015). https://doi.org/10.1038/nphys3459
- 6.
Y. Shen, X. Zhang, S. Zhang, J.-N. Zhang, M.-H. Yung, K. Kim, Phys. Rev. A 95, 020501 (2017). https://doi.org/10.1103/PhysRevA.95.020501
- 7.
S. Seidelin, J. Chiaverini, R. Reichle, J.J. Bollinger, D. Leibfried, J. Britton, J.H. Wesenberg, R.B. Blakestad, R.J. Epstein, D.B. Hume, W.M. Itano, J.D. Jost, C. Langer, R. Ozeri, N. Shiga, D.J. Wineland, Phys. Rev. Lett. 96, 253003 (2006). https://doi.org/10.1103/PhysRevLett.96.253003
- 8.
H. Rohde, S.T. Gulde, C.F. Roos, P.A. Barton, D. Leibfried, J. Eschner, F. Schmidt-Kaler, R. Blatt, Opt. B 3, S34 (2001). https://doi.org/10.1088/1464-4266/3/1/357
- 9.
B. Hemmerling, F. Gebert, Y. Wan, D. Nigg, I.V. Sherstov, P.O. Schmidt, Appl. Phys. B 104, 583 (2011). https://doi.org/10.1007/s00340-011-4444-0
- 10.
J. Chiaverini, D. Leibfried, T. Schaetz, M.D. Barrett, R.B. Blakestad, J. Britton, W.M. Itano, J.D. Jost, E. Knill, C. Langer, R. Ozeri, D.J. Wineland, Nature 432, 602 (2004). https://doi.org/10.1038/nature03074
- 11.
J.M. Pino, J.M. Dreiling, C. Figgatt, J.P. Gaebler, S.A. Moses, M.S. Allman, C.H. Baldwin, M. Foss-Feig, D. Hayes, K. Mayer, C. Ryan-Anderson, B. Neyenhuis, Demonstration of the QCCD trapped-ion quantum computer architecture (2020). arXiv:2003.01293
- 12.
C. Hempel, C. Maier, J. Romero, J. McClean, T. Monz, H. Shen, P. Jurcevic, B.P. Lanyon, P. Love, R. Babbush, A. Aspuru-Guzik, R. Blatt, C.F. Roos, Phys. Rev. X 8, 031022 (2018). https://doi.org/10.1103/PhysRevX.8.031022
- 13.
C.J. Ballance, T.P. Harty, N.M. Linke, M.A. Sepiol, D.M. Lucas, Phys. Rev. Lett. 117, 060504 (2016). https://doi.org/10.1103/PhysRevLett.117.060504
- 14.
J.P. Gaebler, T.R. Tan, Y. Lin, Y. Wan, R. Bowler, A.C. Keith, S. Glancy, K. Coakley, E. Knill, D. Leibfried, D.J. Wineland, Phys. Rev. Lett. 117, 060505 (2016). https://doi.org/10.1103/PhysRevLett.117.060505
- 15.
Y. Wang, M. Um, J. Zhang, S. An, M. Lyu, J.-N. Zhang, L.-M. Duan, D. Yum, K. Kim, Nat. Photon. 11, 646 (2017). https://doi.org/10.1038/s41566-017-0007-1
- 16.
S. Olmschenk, K.C. Younge, D.L. Moehring, D.N. Matsukevich, P. Maunz, C. Monroe, Phys. Rev. A 76, 052314 (2007). https://doi.org/10.1103/PhysRevA.76.052314
- 17.
D. Hayes, D.N. Matsukevich, P. Maunz, D. Hucul, Q. Quraishi, S. Olmschenk, W. Campbell, J. Mizrahi, C. Senko, C. Monroe, Phys. Rev. Lett. 104, 140501 (2010). https://doi.org/10.1103/PhysRevLett.104.140501
- 18.
D. Wineland, C. Monroe, W. Itano, D. Leibfried, B. King, D. Meekhof, J. Res. Nat. Inst. Stand. Technol. 103, 259 (1998). https://doi.org/10.6028/jres.103.019
- 19.
F. Schmidt-Kaler, H. Häffner, S. Gulde, M. Riebe, G. Lancaster, T. Deuschle, C. Becher, W. Hänsel, J. Eschner, C. Roos, R. Blatt, Appl. Phys. B 77, 789 (2003). https://doi.org/10.1007/s00340-003-1346-9
- 20.
P. Schindler, D. Nigg, T. Monz, J.T. Barreiro, E. Martinez, S.X. Wang, S. Quint, M.F. Brandl, V. Nebendahl, C.F. Roos et al., New J. Phys. 15, 123012 (2013). https://doi.org/10.1088/1367-2630/15/12/123012
- 21.
P.C. Schmid, J. Greenberg, M.I. Miller, K. Loeffler, H.J. Lewandowski, Rev. Sci. Instrum. 88, 123107 (2017). https://doi.org/10.1063/1.4996911
- 22.
D.J. Berkeland, J.D. Miller, J.C. Bergquist, W.M. Itano, D.J. Wineland, J. Appl. Phys. 83, 5025 (1998). https://doi.org/10.1063/1.367318
- 23.
J. Keller, H.L. Partner, T. Burgermeister, T.E. Mehlstäubler, J. Appl. Phys. 118, 104501 (2015). https://doi.org/10.1063/1.4930037
- 24.
B.B. Blinov, D. Leibfried, C. Monroe, D.J. Wineland, Quantum Inf. Process. 3, 45 (2004). https://doi.org/10.1007/s11128-004-9417-3
- 25.
E. Mount, S.-Y. Baek, M. Blain, D. Stick, D. Gaultney, S. Crain, R. Noek, T. Kim, P. Maunz, J. Kim, New J. Phys. 15, 093018 (2013). https://doi.org/10.1088/1367-2630/15/9/093018
- 26.
A.C. Lee, J. Smith, P. Richerme, B. Neyenhuis, P.W. Hess, J. Zhang, C. Monroe, Phys. Rev. A 94, 042308 (2016). https://doi.org/10.1103/PhysRevA.94.042308
- 27.
E. Mount, C. Kabytayev, S. Crain, R. Harper, S.-Y. Baek, G. Vrijsen, S.T. Flammia, K.R. Brown, P. Maunz, J. Kim, Phys. Rev. A 92, 060301 (2015). https://doi.org/10.1103/PhysRevA.92.060301
- 28.
E. Knill, D. Leibfried, R. Reichle, J. Britton, R.B. Blakestad, J.D. Jost, C. Langer, R. Ozeri, S. Seidelin, D.J. Wineland, Phys. Rev. A 77, 012307 (2008). https://doi.org/10.1103/PhysRevA.77.012307
- 29.
C. Monroe, D.M. Meekhof, B.E. King, S.R. Jefferts, W.M. Itano, D.J. Wineland, P. Gould, Phys. Rev. Lett. 75, 4011 (1995). https://doi.org/10.1103/PhysRevLett.75.4011
- 30.
J. Roßnagel, K.N. Tolazzi, F. Schmidt-Kaler, K. Singer, New J. Phys. 17, 045004 (2015). https://doi.org/10.1088/1367-2630/17/4/045004
- 31.
R.J. Epstein, S. Seidelin, D. Leibfried, J.H. Wesenberg, J.J. Bollinger, J.M. Amini, R.B. Blakestad, J. Britton, J.P. Home, W.M. Itano, J.D. Jost, E. Knill, C. Langer, R. Ozeri, N. Shiga, D.J. Wineland, Phys. Rev. A 76, 033411 (2007). https://doi.org/10.1103/PhysRevA.76.033411
- 32.
I.A. Boldin, A. Kraft, C. Wunderlich, Phys. Rev. Lett. 120, 023201 (2018). https://doi.org/10.1103/PhysRevLett.120.023201
- 33.
D. Leibfried, D.M. Meekhof, B.E. King, C. Monroe, W.M. Itano, D.J. Wineland, Phys. Rev. Lett. 77, 4281 (1996). https://doi.org/10.1103/PhysRevLett.77.4281
- 34.
T. Feldker, H. Fürst, H. Hirzler, N.V. Ewald, M. Mazzanti, D. Wiater, M. Tomza, R. Gerritsma, Nat. Phys. 16, 413 (2020). https://doi.org/10.1038/s41567-019-0772-5
- 35.
C. Noel, M. Berlin-Udi, C. Matthiesen, J. Yu, Y. Zhou, V. Lordi, H. Häffner, Phys. Rev. A 99, 063427 (2019). https://doi.org/10.1103/PhysRevA.99.063427
- 36.
G. Seber, C. Wild, Nonlinear Regression, Wiley Series in Probability and Statistics (Wiley, New Jersey, 2003)
Acknowledgements
This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MSIP) (no. 2016R1A3B1908660).
Author information
Affiliations
Corresponding authors
Additional information
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Jeon, H., Park, N., Yu, J. et al. Coherent control of \(^{171}\mathrm{Yb}^{+}\) ion qubit states and thermometry using motional decoherence. J. Korean Phys. Soc. 78, 251–258 (2021). https://doi.org/10.1007/s40042-020-00050-6
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords
- Trapped ion
- Raman transition
- Hyperfine qubit
- Thermometry
- Quantum information
- Quantum computation