Coherent control of \(^{171}\mathrm{Yb}^{+}\) ion qubit states and thermometry using motional decoherence

Abstract

\(^{171} \mathrm{Yb}^{+}\)ions were trapped in a quadrupole ion trap. A mode-locked pulse laser at 355 nm was used to generate a frequency comb to drive a Raman transition between the ground hyperfine qubit states of the Doppler cooled ion. Qubit transitions were driven in co-propagating and counter propagating laser beam geometries. In the co-propagating geometry, the coherence time and the fidelity of gate operations were obtained. By taking advantage of the phonon number sensitivity of the Rabi frequency in the counter-propagating geometry, we measured the center of mass temperature of the trapped ion near the Doppler limit which can be used for general thermometry in the ion trap experiment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    W. Paul, Rev. Mod. Phys. 62, 531 (1990). https://doi.org/10.1103/RevModPhys.62.531

    ADS  Article  Google Scholar 

  2. 2.

    P. Ghosh, P. Ghosh, Ion Traps, International Series of Monograph (Clarendon Press, Oxford, 1995)

    Google Scholar 

  3. 3.

    S.M. Brewer, J.-S. Chen, A.M. Hankin, E.R. Clements, C.W. Chou, D.J. Wineland, D.B. Hume, D.R. Leibrandt, Phys. Rev. Lett. 123, 033201 (2019). https://doi.org/10.1103/PhysRevLett.123.033201

    ADS  Article  Google Scholar 

  4. 4.

    S. Debnath, N.M. Linke, C. Figgatt, K.A. Landsman, K. Wright, C. Monroe, Nature 536, 63 (2016). https://doi.org/10.1038/nature18648

    ADS  Article  Google Scholar 

  5. 5.

    D. Gangloff, A. Bylinskii, I. Counts, W. Jhe, V. Vuletić, Nat. Phys. 11, 915 (2015). https://doi.org/10.1038/nphys3459

    Article  Google Scholar 

  6. 6.

    Y. Shen, X. Zhang, S. Zhang, J.-N. Zhang, M.-H. Yung, K. Kim, Phys. Rev. A 95, 020501 (2017). https://doi.org/10.1103/PhysRevA.95.020501

    ADS  Article  Google Scholar 

  7. 7.

    S. Seidelin, J. Chiaverini, R. Reichle, J.J. Bollinger, D. Leibfried, J. Britton, J.H. Wesenberg, R.B. Blakestad, R.J. Epstein, D.B. Hume, W.M. Itano, J.D. Jost, C. Langer, R. Ozeri, N. Shiga, D.J. Wineland, Phys. Rev. Lett. 96, 253003 (2006). https://doi.org/10.1103/PhysRevLett.96.253003

    ADS  Article  Google Scholar 

  8. 8.

    H. Rohde, S.T. Gulde, C.F. Roos, P.A. Barton, D. Leibfried, J. Eschner, F. Schmidt-Kaler, R. Blatt, Opt. B 3, S34 (2001). https://doi.org/10.1088/1464-4266/3/1/357

    ADS  Article  Google Scholar 

  9. 9.

    B. Hemmerling, F. Gebert, Y. Wan, D. Nigg, I.V. Sherstov, P.O. Schmidt, Appl. Phys. B 104, 583 (2011). https://doi.org/10.1007/s00340-011-4444-0

    ADS  Article  Google Scholar 

  10. 10.

    J. Chiaverini, D. Leibfried, T. Schaetz, M.D. Barrett, R.B. Blakestad, J. Britton, W.M. Itano, J.D. Jost, E. Knill, C. Langer, R. Ozeri, D.J. Wineland, Nature 432, 602 (2004). https://doi.org/10.1038/nature03074

    ADS  Article  Google Scholar 

  11. 11.

    J.M. Pino, J.M. Dreiling, C. Figgatt, J.P. Gaebler, S.A. Moses, M.S. Allman, C.H. Baldwin, M. Foss-Feig, D. Hayes, K. Mayer, C. Ryan-Anderson, B. Neyenhuis, Demonstration of the QCCD trapped-ion quantum computer architecture (2020). arXiv:2003.01293

  12. 12.

    C. Hempel, C. Maier, J. Romero, J. McClean, T. Monz, H. Shen, P. Jurcevic, B.P. Lanyon, P. Love, R. Babbush, A. Aspuru-Guzik, R. Blatt, C.F. Roos, Phys. Rev. X 8, 031022 (2018). https://doi.org/10.1103/PhysRevX.8.031022

    Article  Google Scholar 

  13. 13.

    C.J. Ballance, T.P. Harty, N.M. Linke, M.A. Sepiol, D.M. Lucas, Phys. Rev. Lett. 117, 060504 (2016). https://doi.org/10.1103/PhysRevLett.117.060504

    ADS  Article  Google Scholar 

  14. 14.

    J.P. Gaebler, T.R. Tan, Y. Lin, Y. Wan, R. Bowler, A.C. Keith, S. Glancy, K. Coakley, E. Knill, D. Leibfried, D.J. Wineland, Phys. Rev. Lett. 117, 060505 (2016). https://doi.org/10.1103/PhysRevLett.117.060505

    ADS  Article  Google Scholar 

  15. 15.

    Y. Wang, M. Um, J. Zhang, S. An, M. Lyu, J.-N. Zhang, L.-M. Duan, D. Yum, K. Kim, Nat. Photon. 11, 646 (2017). https://doi.org/10.1038/s41566-017-0007-1

    ADS  Article  Google Scholar 

  16. 16.

    S. Olmschenk, K.C. Younge, D.L. Moehring, D.N. Matsukevich, P. Maunz, C. Monroe, Phys. Rev. A 76, 052314 (2007). https://doi.org/10.1103/PhysRevA.76.052314

    ADS  Article  Google Scholar 

  17. 17.

    D. Hayes, D.N. Matsukevich, P. Maunz, D. Hucul, Q. Quraishi, S. Olmschenk, W. Campbell, J. Mizrahi, C. Senko, C. Monroe, Phys. Rev. Lett. 104, 140501 (2010). https://doi.org/10.1103/PhysRevLett.104.140501

    ADS  Article  Google Scholar 

  18. 18.

    D. Wineland, C. Monroe, W. Itano, D. Leibfried, B. King, D. Meekhof, J. Res. Nat. Inst. Stand. Technol. 103, 259 (1998). https://doi.org/10.6028/jres.103.019

    Article  Google Scholar 

  19. 19.

    F. Schmidt-Kaler, H. Häffner, S. Gulde, M. Riebe, G. Lancaster, T. Deuschle, C. Becher, W. Hänsel, J. Eschner, C. Roos, R. Blatt, Appl. Phys. B 77, 789 (2003). https://doi.org/10.1007/s00340-003-1346-9

    ADS  Article  Google Scholar 

  20. 20.

    P. Schindler, D. Nigg, T. Monz, J.T. Barreiro, E. Martinez, S.X. Wang, S. Quint, M.F. Brandl, V. Nebendahl, C.F. Roos et al., New J. Phys. 15, 123012 (2013). https://doi.org/10.1088/1367-2630/15/12/123012

    ADS  Article  Google Scholar 

  21. 21.

    P.C. Schmid, J. Greenberg, M.I. Miller, K. Loeffler, H.J. Lewandowski, Rev. Sci. Instrum. 88, 123107 (2017). https://doi.org/10.1063/1.4996911

    ADS  Article  Google Scholar 

  22. 22.

    D.J. Berkeland, J.D. Miller, J.C. Bergquist, W.M. Itano, D.J. Wineland, J. Appl. Phys. 83, 5025 (1998). https://doi.org/10.1063/1.367318

    ADS  Article  Google Scholar 

  23. 23.

    J. Keller, H.L. Partner, T. Burgermeister, T.E. Mehlstäubler, J. Appl. Phys. 118, 104501 (2015). https://doi.org/10.1063/1.4930037

    ADS  Article  Google Scholar 

  24. 24.

    B.B. Blinov, D. Leibfried, C. Monroe, D.J. Wineland, Quantum Inf. Process. 3, 45 (2004). https://doi.org/10.1007/s11128-004-9417-3

    Article  Google Scholar 

  25. 25.

    E. Mount, S.-Y. Baek, M. Blain, D. Stick, D. Gaultney, S. Crain, R. Noek, T. Kim, P. Maunz, J. Kim, New J. Phys. 15, 093018 (2013). https://doi.org/10.1088/1367-2630/15/9/093018

    ADS  Article  Google Scholar 

  26. 26.

    A.C. Lee, J. Smith, P. Richerme, B. Neyenhuis, P.W. Hess, J. Zhang, C. Monroe, Phys. Rev. A 94, 042308 (2016). https://doi.org/10.1103/PhysRevA.94.042308

    ADS  Article  Google Scholar 

  27. 27.

    E. Mount, C. Kabytayev, S. Crain, R. Harper, S.-Y. Baek, G. Vrijsen, S.T. Flammia, K.R. Brown, P. Maunz, J. Kim, Phys. Rev. A 92, 060301 (2015). https://doi.org/10.1103/PhysRevA.92.060301

    ADS  Article  Google Scholar 

  28. 28.

    E. Knill, D. Leibfried, R. Reichle, J. Britton, R.B. Blakestad, J.D. Jost, C. Langer, R. Ozeri, S. Seidelin, D.J. Wineland, Phys. Rev. A 77, 012307 (2008). https://doi.org/10.1103/PhysRevA.77.012307

    ADS  Article  Google Scholar 

  29. 29.

    C. Monroe, D.M. Meekhof, B.E. King, S.R. Jefferts, W.M. Itano, D.J. Wineland, P. Gould, Phys. Rev. Lett. 75, 4011 (1995). https://doi.org/10.1103/PhysRevLett.75.4011

    ADS  Article  Google Scholar 

  30. 30.

    J. Roßnagel, K.N. Tolazzi, F. Schmidt-Kaler, K. Singer, New J. Phys. 17, 045004 (2015). https://doi.org/10.1088/1367-2630/17/4/045004

    ADS  Article  Google Scholar 

  31. 31.

    R.J. Epstein, S. Seidelin, D. Leibfried, J.H. Wesenberg, J.J. Bollinger, J.M. Amini, R.B. Blakestad, J. Britton, J.P. Home, W.M. Itano, J.D. Jost, E. Knill, C. Langer, R. Ozeri, N. Shiga, D.J. Wineland, Phys. Rev. A 76, 033411 (2007). https://doi.org/10.1103/PhysRevA.76.033411

    ADS  Article  Google Scholar 

  32. 32.

    I.A. Boldin, A. Kraft, C. Wunderlich, Phys. Rev. Lett. 120, 023201 (2018). https://doi.org/10.1103/PhysRevLett.120.023201

    ADS  Article  Google Scholar 

  33. 33.

    D. Leibfried, D.M. Meekhof, B.E. King, C. Monroe, W.M. Itano, D.J. Wineland, Phys. Rev. Lett. 77, 4281 (1996). https://doi.org/10.1103/PhysRevLett.77.4281

    ADS  Article  Google Scholar 

  34. 34.

    T. Feldker, H. Fürst, H. Hirzler, N.V. Ewald, M. Mazzanti, D. Wiater, M. Tomza, R. Gerritsma, Nat. Phys. 16, 413 (2020). https://doi.org/10.1038/s41567-019-0772-5

    Article  Google Scholar 

  35. 35.

    C. Noel, M. Berlin-Udi, C. Matthiesen, J. Yu, Y. Zhou, V. Lordi, H. Häffner, Phys. Rev. A 99, 063427 (2019). https://doi.org/10.1103/PhysRevA.99.063427

    ADS  Article  Google Scholar 

  36. 36.

    G. Seber, C. Wild, Nonlinear Regression, Wiley Series in Probability and Statistics (Wiley, New Jersey, 2003)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MSIP) (no. 2016R1A3B1908660).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Dahyun Yum or Wonho Jhe.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jeon, H., Park, N., Yu, J. et al. Coherent control of \(^{171}\mathrm{Yb}^{+}\) ion qubit states and thermometry using motional decoherence. J. Korean Phys. Soc. 78, 251–258 (2021). https://doi.org/10.1007/s40042-020-00050-6

Download citation

Keywords

  • Trapped ion
  • Raman transition
  • Hyperfine qubit
  • Thermometry
  • Quantum information
  • Quantum computation