Spin and mass currents near a moving magnetic obstacle in a two-component Bose–Einstein condensate

Abstract

We study the spatial distributions of the spin and mass currents generated by a moving Gaussian magnetic obstacle in a symmetric, two-component Bose–Einstein condensate in two dimensions. We analytically describe the current distributions for a slow obstacle and show that the spin and the mass currents exhibit characteristic spatial structures resembling those of electromagnetic fields around dipole moments. When the obstacle’s velocity increases, we numerically observe that the flow pattern maintains its overall structure while the spin polarization induced by the obstacle is enhanced with an increased spin current. We investigate the critical velocity of the magnetic obstacle based on the local criterion of Landau energetic instability and find that it decreases almost linearly as the magnitude of the obstacle’s potential increases, which can be directly tested in current experiments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    L.D. Landau, J. Phys. USSR 5, 71 (1941)

    Google Scholar 

  2. 2.

    C. Raman, M. Köhl, R. Onofrio, D.S. Durfee, C.E. Kuklewicz, Z. Hadzibabic, W. Ketterle, Phys. Rev. Lett. 83, 2502 (1999)

    ADS  Article  Google Scholar 

  3. 3.

    R. Desbuquois, L. Chomaz, T. Yefsah, J. Léonard, J. Beugnon, C. Weitenberg, J. Dalibard, Nat. Phys. 8, 645 (2012)

    Article  Google Scholar 

  4. 4.

    W. Weimer, K. Morgener, V.P. Singh, J. Siegl, K. Hueck, N. Luick, L. Mathey, H. Moritz, Phys. Rev. Lett. 114, 095301 (2015)

    ADS  Article  Google Scholar 

  5. 5.

    T. Frisch, Y. Pomeau, S. Rica, Phys. Rev. Lett. 69, 1644 (1992)

    ADS  Article  Google Scholar 

  6. 6.

    T.W. Neely, E.C. Samson, A.S. Bradley, M.J. Davis, B.P. Anderson, Phys. Rev. Lett. 104, 160401 (2010)

    ADS  Article  Google Scholar 

  7. 7.

    W.J. Kwon, G. Moon, S.W. Seo, Y. Shin, Phys. Rev. A 91, 053615 (2015)

    ADS  Article  Google Scholar 

  8. 8.

    J.W. Park, B. Ko, Y. Shin, Phys. Rev. Lett. 121, 225301 (2018)

    ADS  Article  Google Scholar 

  9. 9.

    V.P. Singh, W. Weimer, K. Morgener, J. Siegl, K. Hueck, N. Luick, H. Moritz, L. Mathey, Phys. Rev. A 93, 023634 (2016)

    ADS  Article  Google Scholar 

  10. 10.

    S.W. Seo, S. Kang, W.J. Kwon, Y. Shin, Phys. Rev. Lett. 115, 015301 (2015)

    ADS  Article  Google Scholar 

  11. 11.

    J.H. Kim, S.W. Seo, Y. Shin, Phys. Rev. Lett. 119, 185302 (2017)

    ADS  Article  Google Scholar 

  12. 12.

    E. Fava, T. Bienaimé, C. Mordini, G. Colzi, C. Qu, S. Stringari, G. Lamporesi, G. Ferrari, Phys. Rev. Lett. 120, 170401 (2018)

    ADS  Article  Google Scholar 

  13. 13.

    S.W. Seo, W.J. Kwon, S. Kang, Y. Shin, Phys. Rev. Lett. 116, 185301 (2016)

    ADS  Article  Google Scholar 

  14. 14.

    A. Farolfi, D. Trypogeorgos, C. Mordini, G. Lamporesi, G. Ferrari, Phys. Rev. Lett. 125, 030401 (2020)

    ADS  Article  Google Scholar 

  15. 15.

    X. Chai, D. Lao, K. Fujimoto, R. Hamazaki, M. Ueda, C. Raman, Phys. Rev. Lett. 125, 030402 (2020)

    ADS  Article  Google Scholar 

  16. 16.

    H. Susanto, P.G. Kevrekidis, R.C. González, B.A. Malomed, D.J. Frantzeskakis, A.R. Bishop, Phys. Rev. A 75, 055601 (2007)

    ADS  Article  Google Scholar 

  17. 17.

    Y.G. Gladush, A.M. Kamchatnov, Z. Shi, P.G. Kevrekidis, D.J. Frantzeskakis, B.A. Malomed, Phys. Rev. A 79, 033623 (2009)

    ADS  Article  Google Scholar 

  18. 18.

    A.M. Kamchatnov, Y.V. Kartashov, Phys. Rev. Lett. 111, 140402 (2013)

    ADS  Article  Google Scholar 

  19. 19.

    X.L. Li, X.-Y. Yang, N. Tang, L. Song, Z.-K. Zhou, J. Zhang, Y.-R. Shi, New J. Phys. 21, 103046 (2019)

    ADS  Article  Google Scholar 

  20. 20.

    H. Takeuchi, S. Ishino, M. Tsubota, Phys. Rev. Lett. 105, 205301 (2010)

    ADS  Article  Google Scholar 

  21. 21.

    S. Ishino, M. Tsubota, H. Takeuchi, Phys. Rev. A 83, 063602 (2011)

    ADS  Article  Google Scholar 

  22. 22.

    J.H. Kim, D. Hong, Y. Shin, Phys. Rev. A 101, 061601(R) (2020)

    ADS  Article  Google Scholar 

  23. 23.

    S. Stringari, Phys. Rev. Lett. 77, 2360 (1996)

    ADS  Article  Google Scholar 

  24. 24.

    E. Madelung, Z. Phys. 40, 322 (1927)

    ADS  Article  Google Scholar 

  25. 25.

    J. Stenger, S. Inouye, D.M. Stamper-Kurn, H.-J. Miesner, A.P. Chikkatur, W. Ketterle, Nature 396, 345 (1998)

    ADS  Article  Google Scholar 

  26. 26.

    S. Knoop, T. Schuster, R. Scelle, A. Trautmann, J. Appmeier, M.K. Oberthaler, Phys. Rev. A 83, 042704 (2011)

    ADS  Article  Google Scholar 

  27. 27.

    M. Abad, A. Recati, S. Stringari, F. Chevy, Eur. Phys. J. D 69, 126 (2015)

    ADS  Article  Google Scholar 

  28. 28.

    W.J. Kwon, S.W. Seo, Y. Shin, Phys. Rev. A 92, 033613 (2015)

    ADS  Article  Google Scholar 

  29. 29.

    K. Sasaki, N. Suzuki, H. Saito, Phys. Rev. Lett. 104, 150404 (2010)

    ADS  Article  Google Scholar 

  30. 30.

    W.J. Kwon, J.H. Kim, S.W. Seo, Y. Shin, Phys. Rev. Lett. 117, 245301 (2016)

    ADS  Article  Google Scholar 

  31. 31.

    J. Choi, W.J. Kwon, Y. Shin, Phys. Rev. Lett. 108, 035301 (2012)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank Joon Hyun Kim for his discussion and critical reading of the manuscript. This study was supported by the National Research Foundation of Korea (NRF-2018R1A2B3003373, NRF-2019M3E4A1080400).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Y. Shin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jung, J.H., Kim, H.J. & Shin, Y. Spin and mass currents near a moving magnetic obstacle in a two-component Bose–Einstein condensate. J. Korean Phys. Soc. 78, 19–26 (2021). https://doi.org/10.1007/s40042-020-00008-8

Download citation

Keywords

  • Superfluidity
  • Bose–Einstein condensate
  • Binary superfluid